Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Protherm Lynx Condens 25/30 MKV 26.5 kW vs Protherm Panther 25 KKV 25 kW
230 V

Add to comparison
Protherm Lynx Condens 25/30 MKV 26.5 kW
Protherm Panther 25 KKV 25 kW 230 V
Protherm Lynx Condens 25/30 MKV 26.5 kWProtherm Panther 25 KKV 25 kW
230 V
from $959.70 up to $1,072.12
Outdated Product
from $888.00
Outdated Product
User reviews
0
3
0
2
TOP sellers
Energy sourcegasgas
Installationwallwall
Typedual-circuit (heating and DHW)dual-circuit (heating and DHW)
Heating area212 m²188 m²
Condensing
Technical specs
Heat output26.5 kW25 kW
Min. heat output6.3 kW
Power supply230 V230 V
Power consumption95 W151 W
Rated current2 А
Coolant min. T10 °С
Coolant max. T75 °С80 °С
Heating circuit max. pressure3 bar3 bar
DHW circuit max. pressure10 bar10 bar
Consumer specs
DHW min. T35 °С38 °С
DHW max. T60 °С60 °С
Performance (ΔT ~30 °C)12.2 L/min12.2 L/min
"Summer" mode
Warm start
Circulation pump
Control buseBus
Boiler specs
Efficiency104 %108.4 %
Combustion chamberclosed (turbocharged)closed (turbocharged)
Flue diameter60/100, 80/125 mm60/100, 80/125 mm
Inlet gas pressure13 mbar20 mbar
Max. gas consumption3.2 m³/h2.7 m³/h
Expansion vessel capacity8 L8 L
Expansion vessel pressure3 bar
Heat exchangeraluminium
Connections
Mains water intake3/4"
DHW flow3/4"
Gas supply1/2"1/2"
Central heating flow3/4"3/4"
Central heating return3/4"3/4"
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
 
 
frost protection
gas pressure drop
water overheating
flame loss
draft control
power outage
water circulation failure
frost protection
More specs
Dimensions (HxWxD)700x390x280 mm740х418х344 mm
Weight32 kg37.7 kg
Added to E-Catalogapril 2016august 2012

Heating area

A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.

Heat output

It is the maximum useful power of the boiler.

The ability of the device to heat a room of a particular area directly depends on this parameter; by power, you can approximately determine the heating area, if this parameter is not indicated in the specs. The most general rule says that for a dwelling with a ceiling height of 2.5 – 3 m, at least 100 W of heat power is needed to heat 1 m2 of area. There are also more detailed calculation methods that take into account specific factors: the climatic zone, heat gain from the outside, design features of the heating system, etc.; they are described in detail in special sources. Also note that in dual-circuit boilers (see "Type"), part of the heat generated is used to heat water for the hot water supply; this must be taken into account when evaluating the output power.

It is believed that boilers with a power of more than 30 kW must be installed in separate rooms (boiler rooms).

Min. heat output

The minimum heat output at which the heating boiler can operate in constant mode. Operation at minimum power allows you to reduce the number of on-and-off cycles that adversely affect the durability of heating boilers.

Power consumption

The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.

Rated current

The current consumed by the electric boiler (see "Power source") during normal operation.

This parameter directly depends on the power. It is required primarily for organizing the connection: wiring and automation must safely deal with the current consumed by the unit.

Coolant min. T

The minimum operating temperature of the heat medium in the boiler system when operating in heating mode.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

DHW min. T

The minimum temperature of domestic hot water (DHW) supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). At the same time, in some boilers, the minimum heating temperature can be only 10 °C or even 5 °C. A similar mode of operation is used to protect pipes from freezing during the cold season: the circulation of water with a positive temperature prevents the formation of ice inside and damage to the circuits.

It is also worth keeping in mind that when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.

Control bus

The control bus with which the boiler is compatible.

The control bus is a communication channel through which control and controlled devices can exchange data. Support for such a channel greatly simplifies the connection of thermostats and other control automation. It is enough that such devices are compatible with the same bus as the boiler. In addition, many types of tyres allow you to create very extensive monitoring and control systems and easily integrate various devices into them, including heating boilers.

In modern heating technology, the most popular tyres are OpenTherm, eBus, Bus BridgeNet and EMS. Here are their key features:

— OpenTherm. A fairly simple standard with modest functionality: it allows only a direct connection between the control and the controlled device and is not designed to create extensive systems. On the other hand, this bus has quite advanced capabilities for controlling heaters: in particular, it allows you to control the temperature not just by turning the boiler on/off, but by changing the power of the gas burner. This mode of operation contributes to saving fuel/energy, as well as reduces wear and increases the life of the heater; and in many cases, a system of two devices (boiler and thermostat) is quite enough for effective heating control. At the same time, the OpenThe...rm standard is simple and inexpensive to implement, which makes it extremely popular in modern boilers. For several reasons, it is mainly used in gas models.

— eBUS. A control bus that has some pretty impressive features. Allows you to combine up to 25 control and 228 controlled devices in one system, with a data transmission distance between individual components up to 1 km. At the same time, eBUS is an open standard, its implementation (at least within the framework of the main functions) is freely available to everyone. And although nowadays eBUS support can be found mainly in Protherm and Vaillant equipment. However, in boilers, this is the second most popular type of control bus, after OpenTherm. It is mainly due to slightly higher cost, while advanced eBUS capabilities are not needed as often.

— Bus BridgeNet. Hotpoint-Ariston proprietary development, used exclusively in boilers of this brand. One of the advantages is a high degree of automation: the user only needs to set the temperature parameters (and for different zones, you can choose custom options) and, if desired, a weekly programme, the rest of the necessary calculations and adjustments will be carried out by the system. However, such features are available only in special control devices such as temperature controllers; in boilers, Bus BridgeNet support usually means only compatibility with such automation.

— EMS. A control bus used primarily in Bosch and Buderus equipment. In general, it is characterized by wide functionality, a high degree of automation and the ability to create extensive control systems. However, note that nowadays you can find both the original EMS and the modified EMS Plus, and these standards are not initially compatible with each other (although support for both of them may well be provided in some devices). So the specific version of the EMS bus should be specified separately. We note that in Bosch devices there is mainly an original version, and in Buderus devices — EMS Plus (although exceptions are possible there and there).
Protherm Lynx Condens 25/30 MKV often compared