Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison Buran 20 20 kW vs STROPUVA S20 20 kW

Add to comparison
Buran 20 20 kW
STROPUVA S20 20 kW
Buran 20 20 kWSTROPUVA S20 20 kW
from $972.00 up to $1,100.00
Outdated Product
from $828.00 up to $1,399.60
Outdated Product
User reviews
1
0
1
0
TOP sellers
Main
Omnivorous to various types of fuel. High efficiency. Energy independence. Long duration of burning on one bookmark of fuel. Additional middle loading door.
High efficiency (over 91%). Offline work. Firewood and briquettes as fuel. Economical fuel consumption.
Energy sourcefirewoodfirewood
Installationfloorfloor
Typesingle-circuit (heating only)single-circuit (heating only)
Heating area160 m²150 m²
Long burning
Technical specs
Heat output20 kW20 kW
Power supplyautonomous (no electricity)autonomous (no electricity)
Coolant max. T90 °С70 °С
Heating circuit max. pressure1.5 bar2 bar
Consumer specs
Circulation pump
Boiler specs
Efficiency89 %91.6 %
Combustion chamberopen (atmospheric)open (atmospheric)
Flue diameter180 mm
Coolant performance500 L/h
Connections
Central heating flow2"1 1/4"
Central heating return2"1 1/4"
Safety
Safety systems
water overheating
 
More specs
Dimensions (HxWxD)1910x692x797 mm2100x560x560 mm
Weight240 kg231 kg
Added to E-Catalogmay 2015august 2011

Heating area

A very conditional parameter that slightly characterizes the purpose based on the size of the room. And depending on the height of the ceilings, layout, building design and equipment, actual values may differ significantly. However, this item represents the maximum recommended area of the room that the boiler can effectively heat. However, it is worth considering that different buildings have different thermal insulation properties and modern buildings are much “warmer” than 30-year-old and especially 50-year-old houses. Accordingly, this item is more of a reference nature and does not allow us to fully assess the actual heated area. There is a formula by which you can derive the maximum heating area, knowing the useful power of the boiler and the climatic conditions in which it will be used; For more information on this, see "Useful Power". In our case, the heating area is calculated using the formula “boiler power multiplied by 8”, which is approximately equivalent to use in houses that are several decades old.

Coolant max. T

The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.

Heating circuit max. pressure

The maximum pressure in the heating circuit of the boiler, at which it remains operational, and there is no risk of physical damage to the structure. For a heating system, the maximum pressure is usually about 3 bar, and for a domestic hot water circuit up to 10 bar. When the maximum pressure is exceeded, a safety valve is activated, and part of the water is discharged from the system until a normal pressure level is reached.

Efficiency

The efficiency of the boiler.

For electric models (see "Energy source"), this parameter is calculated as the ratio of net power to consumed; in such models, indicators of 98 – 99% are not uncommon. For other boilers, the efficiency is the ratio of the amount of heat directly transferred to the water to the total heat amount released during combustion. In such devices, the efficiency is lower than in electric ones; for them, a parameter of more than 90% is considered good. An exception is gas condensing boilers (see the relevant paragraph), where the efficiency can even be higher than 100%. There is no violation of the laws of physics here. It is a kind of advertising trick: when calculating the efficiency, an inaccurate method is used that does not take into account the energy spent on the formation of water vapour. Nevertheless, formally everything is correct: the boiler gives out more thermal energy to the water than is released during the combustion of fuel since condensation energy is added to the combustion energy.

Flue diameter

The diameter of the pipe through which combustion products are discharged from the combustion chamber.

In boilers with a closed combustion chamber often used the coaxial flue, consisting of two pipes nested one inside the other. At the same time, products of combustion are discharged from the combustion chamber through the inner pipe, and the air is supplied through the gap between the inner and outer ones. For such flues, the diameter is usually shown in the form of two numbers — the diameter of the inner and outer pipes, respectively. The most popular values are 60/100, 80/80 and 80/125. Non-coaxial flues can be 100, 110, 125, 130, 140, 150, 160, 180 and 200 mm.

Coolant performance

The amount of heat carrier passing through the boiler heat exchanger per unit of time. The optimal performance is such that three full volumes of the entire heating system pass through the heat exchanger per hour.

Central heating flow

The diameter of the pipe for connecting the pipe through which the heated water enters the heating system from the boiler.

Diameters are indicated in inches. In some cases, it is allowed to connect a pipe of a different diameter through an adapter, but the best option is still a match in size. Among which models stand out for 3/4", 1", 1 1/4" and 1 1/2".

Central heating return

The diameter of the pipe for connecting the pipe through which the cooled water returns from the heating system to the boiler.

Diameters are indicated in inches. In some cases, it is allowed to connect a pipe of a different diameter through an adapter, but the best option is still a match in size.

Safety systems

Gas pressure drop. This protection system ensures that the boiler is switched off in the event of a critical drop in gas pressure, insufficient for the normal functioning of the burner. In the event of such a fall, the valve that supplies gas to the burner is closed and blocked. After the restoration of gas pressure, it also remains closed; it is necessary to open it and resume the gas supply manually.

Water overheating. A temperature sensor automatically turns off the boiler when the temperature of the water in the system is critically exceeded.

Flame loss. Flame loss protection is based on a sensor that monitors the combustion of gas and automatically stops its supply. It prevents the room from filling with gas and the possible tragic consequences of this.

Draft control. In boilers with an open combustion chamber, to maintain normal conditions in the room where such a boiler is installed, constant removal of products of combustion into the atmosphere is necessary. The lack of a normal draft in the chimney can lead to the accumulation of combustion products in the room. The draft protection system prevents this by automatically turning off the boiler when it detects the release of combustion products outside the chimney.

Power outage. Most modern boilers h...ave an electronic control system; in addition, many structural elements (pumps, valves, fans, etc.) are also powered by electricity. Thus, a power outage during the operation of the boiler will inevitably lead to an abnormal mode of operation, which is fraught with breakdowns and even accidents. To prevent such cases, a power outage protection system is installed, which completely stops the operation of the boiler in the event of a power outage. When the power supply is restored, the boiler needs to be restarted manually.

Water circulation failure. This protection system controls the normal movement of the water through the heating circuit. Water circulation failure can lead to overheating of some elements of the boiler and damage to it. To avoid this, if the circulation is disturbed, the system turns off the pump and shuts off the gas supply to the burner.

Frost protection. A system that controls the temperature in the heating circuit. Freezing of the liquid in the circuit disrupts the normal operation of the heating, which may require heating of the pipes and lead to system damage. To avoid this, when the water temperature drops below 5 °C, the burner is ignited, the circulation pump is activated, and the circuit warms up to a temperature of about 35 °C — thus preventing the formation of ice in the pipes.