Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Dehumidifiers

Comparison Ballu BDH-50L vs Cooper&Hunter CH-D025WD

Add to comparison
Ballu BDH-50L
Cooper&Hunter CH-D025WD
Ballu BDH-50LCooper&Hunter CH-D025WD
from $353.96 up to $440.20
Outdated Product
from $1,360.00 up to $1,925.84
Outdated Product
TOP sellers
Main functionhouseholdfor pool
Typecondensingcondensing
Installationfloorfloor / wall
Specs
Capacity50 L/day60 L/day
Power consumption740 W920 W
Recommended room area100 m²90 m²
Power supplysingle-phase (230 V)single-phase (230 V)
Controlspush-buttonpush-button
Air flow306 m³/h450 m³/h
Dehumidifying operating range35 – 80 % Rh20 – 90 % Rh
Operating temperature range7 – 32 °C10 – 42 °C
Heaterelectric
Heater power1.6 kW
Condensate tank volume7.7 L
Noise level52 dB46 dB
RefrigerantR410AR407С
Features
Functions
hygrostat
fan speed adjustment
timer
anti-freeze mode
air filter
tank indicator
auto shutdown
drainage
drain pump
hygrostat
 
 
anti-freeze mode
 
 
 
drainage
 
General specs
Wheels
Display
Remote control
Dimensions593x383x308 mm750x890x255 mm
Weight21.5 kg50 kg
Added to E-Catalognovember 2015march 2015

Main function

The general scope of the dehumidifier and the associated design and functional features depend on the purpose.

Home. Usually, these are relatively compact devices, many of which are designed for ease of movement from place to place, within the same apartment, office, etc. (although there are models with wall mounting, see below). The performance of most home dehumidifiers is relatively small, but for the purposes for which they are used (air dehumidification in residential areas), this is quite enough. Such models have a fairly neat design, which allows them to successfully fit into the overall design of the premises mentioned.

Pool. A specialized type of dehumidifier designed for use in indoor swimming pools, where it is necessary to constantly work with large volumes of air with high humidity. However, the performance of dehumidifiers of this type can be different — after all, pools can have different sizes. But the system of permanent condensate drainage(see "Features") is mandatory for all such units — this is due to the specifics of the work (because the water from the surface of the pool evaporates constantly). The difference between such dehumidifiers and the ducted systems described below is that they are installed directly in the pool room.

— Professional. A type of dehumidifier designed primarily for use in industrial faciliti...es, utility rooms, etc. All professional models are distinguished by two key features. The first one is rather high performance. Of course, there are exceptions, but they are rare. Secondly, in professional dehumidifiers, minimal attention is paid to appearance. It is because such devices are supposed to be used in non-residential premises, where the key role is played exclusively by the functionality of the equipment, and its aesthetics is not important.

— Ducted. Specific types of dehumidifiers are used for swimming pool areas. From models for the pool (see above), this variety differs primarily in that the ducted unit is installed in a separate room, where duct pipes are supplied from the main room. Thus, the dehumidifier does not affect the design of the room; in addition, such an installation allows the use of very powerful and performant (and, accordingly, large-sized) units, which far exceed the capabilities of conventional dehumidifiers, but are of little use for installation in the same room. Ducted models are designed mainly for public swimming pools, water parks and other large spaces.

Installation

Floor. Installation directly on the floor (or other similar horizontal surface). The main advantage of this method is simplicity: it does not require special installation work, and it is enough to drag the unit to the installation site. The task is further simplified by the presence of wheels for movement (see below) — to the point that relatively small and light models can be easily rearranged from room to room if necessary. Among the disadvantages of floor installation, first of all, poor suitability for cramped conditions, when there is little free space on the floor, should be noted. However, in the case of dehumidifiers, these conditions are rare.

Wall. Wall mounting allows you to leave space on the floor free so that such dehumidifiers can be installed where the use of floor models is not possible. However, the installation and reinstallation of such units are much more difficult, the large weight of the units puts forward increased requirements for the reliability of fastenings, and there is simply no point in making high-power wall-mounted dehumidifiers — their installation would be too complicated.

Ceiling. A rather peculiar option, which is relatively rare for several reasons. Typically, a device with this installation consists of two separate units: a unit, which is actually fixed to the ceiling, and a compressor installed on the floor.... The ceiling unit turns out to be quite compact, neat and light, it can be fit into most interiors without any problems; and in some models, this part of the dehumidifier may even have unusual additional features, such as a speaker or a built-in lamp. The compressor can be installed in an inconspicuous place, or even a separate room.

— Floor/wall. Models that allow both floor and wall mounting. Features of both types of installation are described above. Here it is worth saying that the choice can be very convenient, but it also affects the cost of the device. In addition, given the rarity of cases when wall installation is preferable to floor installation, it is hardly justified to create numerous universal models. Therefore, such dehumidifiers have not received much distribution, they are even less common than purely wall-mounted ones, not to mention floor-mounted ones.

Note that due to certain technical tricks, you can install the unit in a “non-native” way — mount a stand for a floor model on the wall or put a wall-mounted one directly on the floor (or on special devices on the floor). However, an abnormal installation is highly undesirable, and in some cases even dangerous. Therefore, it is worthwhile to accurately determine the installation method and immediately select the appropriate unit, and in extreme cases, purchase a dehumidifier with both installation options and decide along the way.

Capacity

The nominal capacity of the dehumidifier is the maximum amount of moisture that the unit can remove from the air per day.

For efficient operation, the capacity of the dehumidifier must be no less than the amount of excess moisture that accumulates in the room during the same time. This amount can be calculated using special formulas or calculator programs. However, the results of such calculations are quite approximate, but they can be used in the selection, and for a full guarantee it is worth taking a performance margin of at least 10–20%. If desired, this margin can be more; but note that high performance significantly affects the price, dimensions and energy consumption of the dehumidifier.

Power consumption

Power consumption of the dehumidifier in normal operation.

From a practical point of view, this characteristic is secondary — manufacturers select power in such a way as to provide the necessary operating parameters (performance, air flow, etc.), and when choosing, you should focus primarily on these parameters. However, certain practical points also depend on the power consumption. Firstly, only models of less than 3-3.5 kW can be connected to ordinary household outlets; higher power consumption will require either a 400 V supply (see Power supply) or a direct connection to the panel. However, even power of more than 2 kW is rare in modern dehumidifiers — for most of these devices, the energy consumption is in the range from 500 to 1000 W or from 1000 to 2000 W, and in the most modest models it does not exceed 500 W at all. Secondly, power data may be required to calculate the load on the power grid. Such a need arises mainly for the selection of additional equipment — circuit breakers, AVR, UPS, etc.

Also, note that models with similar performance may differ in power consumption. However, a more economical dehumidifier often costs more, but with regular use, this difference pays off by reducing energy costs.

Recommended room area

A very conditional parameter that slightly characterizes the purpose by the size of the room. And depending on the height of the ceilings, layout, structure of the building and equipment, the actual values ​​​​may differ significantly. Nevertheless, this item represents the maximum recommended area of ​​​​the room that this model can effectively serve: the use in smaller rooms is quite acceptable, but the device simply does not have enough performance for a larger space. Also, note that the area is indicated based on a ceiling height of 2.5-3 m — the standard value for residential premises; with a higher ceiling height, the effective area decreases, and it can be recalculated using special formulas.

When choosing by area, it is worth taking a certain margin, but it should not be too large — otherwise, the device will be unnecessarily powerful, bulky and expensive.

Air flow

The maximum amount of air that a dehumidifier can pass through in an hour.

The choice for this parameter depends on the size of the room. It is believed that for effective operation, the dehumidifier must drive through itself an amount of air in an hour that exceeds the volume of the room by 3-4 times; and you can determine the volume of the room by multiplying the area by the height of the ceiling. For example, a 12 m² room with 2.5 m ceilings will hold 12*2.5=30 m³ of air; accordingly, for efficient operation in such a room, a dehumidifier with a capacity of 30*3=90 m³/h, and preferably 30*4=120 m³/h, is required. It is quite possible to choose a unit with a margin for airflow — unless you need to take into account that an increase in performance affects the price and energy consumption. But a too-low value of this parameter is undesirable: such a dehumidifier simply cannot effectively cope with its task.

As for specific figures, relatively low-power models produce up to 250 m³/h, equipment for 251–500 m³/h and 501–750 m³/h can be attributed to the average level, and many units are capable of processing more than 750 m³/h.

Dehumidifying operating range

The range of relative humidity (RH — relative humidity) of the ambient air, in which the dehumidifier is guaranteed to be able to cope with its task and at the same time perform at the level claimed by the manufacturer.

The wider this range — the more versatile the unit, the less likely it is to be in emergency conditions. At the same time, when choosing, it is worth considering the specifics of the application of the dehumidifier. Thus, dehumidifiers are initially designed for high humidity, but the ability to work at 100% relative humidity is not always required. For example, in the cold season, the air coming from the street is "drier" by itself when heated indoors (due to the increase in temperature, the relative humidity drops, although the actual amount of moisture in the air does not change), and even in wet weather, a dehumidifier with a limit of 80-90% may be enough. And the lower dehumidification limit directly depends on the tasks facing the device. If we are talking about living quarters, offices and other places where you need to create conditions that are pleasant for people, then you need to take into account that the most comfortable values for a person concerning humidity are 40-70%. Therefore, for such conditions, it makes no sense to specifically look for a device with a lower limit of less than 40%. But for specific tasks such as drying rooms during repairs, warehousing, etc. lower humidity levels may be needed.

Note that many model...s are quite capable of working outside the operating range, except that the performance may decrease. However, it does not hurt to clarify such an ability according to the official documentation.

Operating temperature range

The ambient temperature range in which the dehumidifier can operate normally. The wider this range, the more versatile the dehumidifier is, and the more diverse the conditions in which it can be used. Note that, in contrast to the humidity range (see above), going beyond the operating temperatures is fraught not only with loss of efficiency but also with serious malfunctions and even breakdowns. Therefore, it is worth choosing a unit according to this parameter in such a way that it is guaranteed to block possible fluctuations in the temperature of the air with which the dehumidifier is to work.

Note that most modern models are designed to operate at positive temperatures, with the lower limit being on average about 4–5 °C. The only type of dehumidifiers that can operate at temperatures below zero are adsorption dryers(see "Suitable for").

Heater

The presence of a heater in the design of the dehumidifier helps the device to work favourably at low temperatures and additionally warm the room slightly.
Ballu BDH-50L often compared