United Kingdom
Catalog   /   Sound & Hi-Fi   /   Microphones

Comparison AKG P420 vs Audio-Technica AT2050

Add to comparison
AKG P420
Audio-Technica AT2050
AKG P420Audio-Technica AT2050
Compare prices 4Compare prices 4
TOP sellers
Microphonestudiostudio
Operating principlecondensercondenser
Specs
Microphone directivity
unidirectional
bidirectional
omnidirectional
unidirectional
bidirectional
omnidirectional
Directional pattern
cardioid
cardioid
Rated resistance200 Ohm120 Ohm
Frequency range20 – 20000 Hz20 – 20000 Hz
Sensitivity-31 dB-42 dB
Sound pressure155 dB
159 dB /149 with attenuator on/
Signal to noise ratio79 dB77 dB
Functions and connectors
Features
Roll-off /300 Hz/
attenuator /-20 дБ/
dp switching
Roll-off /-12 dB/oct at 80 Hz/
attenuator
dp switching
Connection
XLR
XLR
General
Power sourcephantomphantom
Materialmetalmetal
Size165х54х54 mm170х52х52 mm
Weight530 g412 g
In box
anti-shock suspension ("spider")
case
anti-shock suspension ("spider")
case
Color
Added to E-Catalognovember 2015december 2014

Rated resistance

Microphone AC impedance; this parameter is also called "impedance". This is one of the most important characteristics that determines compatibility with the amplifier or other device to which the microphone is connected: if the impedance is not optimal, there may be a loss in signal power. It has its own characteristics, depending on the purpose of a particular model (see above). So, for microphones used with computers, laptops, voice recorders and phones / tablets, the impedance may not be indicated at all — the characteristics of such models are selected in such a way as to ensure normal compatibility with the corresponding devices. But in professional audio equipment, special rules are used for selection; more details can be found in special sources.

Sensitivity

Sensitivity describes the signal strength at the output of a microphone when it processes a sound of a certain volume. In this case, sensitivity means the ratio of the output voltage to the sound pressure on the membrane, expressed in decibels. The higher this number, the higher the sensitivity. Note that, as a rule, values in decibels are negative, so we can say this: the closer the number is to zero, the more sensitive the microphone. For example, a -38 dB model outperforms a -54 dB model in this parameter.

It should be borne in mind that high sensitivity in itself does not mean high sound quality - it only allows the device to “hear” a weaker sound. Conversely, low sensitivity is not an unequivocal sign of a bad microphone. The choice for this parameter depends on the specifics of the application: a sensitive device is useful for working with low sounds and in cases where it is necessary to capture the smallest nuances of what is happening, and a “weak” microphone will be convenient at high sound volume or, if necessary, filter out extraneous weak noises. There are models with sensitivity adjustment(and for models with a headphone output , headphone volume control may be provided).

Sound pressure

The maximum sound pressure perceived by the microphone, at which the harmonic oscillation coefficient does not exceed 0.5% — in other words, the highest sound volume at which no noticeable interference occurs.

The higher this indicator, the better the microphone is suitable for working with loud sound. Here it is worth considering that the decibel is a non-linear quantity; in other words, an increase in volume from 10 dB to 20 dB or from 20 to 40 dB does not mean a 2-fold increase in volume. Therefore, when assessing, it is most convenient to refer to comparative tables of noise levels. Here are some examples: a level of 100 dB roughly corresponds to a motorcycle engine or subway car noise; 110 dB — helicopter; 120 dB — the work of a demolition hammer; 130 dB, comparable to the sound of a jet aircraft taking off, is considered a pain threshold for a person. At the same time, many high-end microphones are able to work normally at a sound pressure of 140 – 150 dB — and this is a noise level that can cause physical damage to a person.

Signal to noise ratio

A parameter that describes the relationship between the useful signal level and the noise level produced by the microphone. Note that the actual signal-to-noise ratio varies depending on the sound pressure perceived by the microphone. Therefore, in the characteristics it is customary to indicate the option for a standard situation — at a sound pressure of 94 dB. This allows you to compare different models with each other.

In general, this indicator quite clearly characterizes the quality of work of a particular model, since it takes into account almost all significant extraneous noise that occurs during operation. The greater this ratio, the clearer the sound is, the less distortion it has. Values of 64 – 66 dB are considered quite decent, and high-end microphones provide performance of 72 dB and higher.
AKG P420 often compared
Audio-Technica AT2050 often compared