United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Deep Well Pumps

Comparison Belamos TF3-80 vs Karcher BP 6 Deep Well

Add to comparison
Belamos TF3-80
Karcher BP 6 Deep Well
Belamos TF3-80Karcher BP 6 Deep Well
Outdated ProductCompare prices 1
TOP sellers
Max. performance
2700 L/h /maximum/
5000 L/h /maximum/
Max. head
85 m /maximum/
55 m /maximum/
Specs
Max. working pressure5.5 bar
Operating principlecentrifugalcentrifugal
Max. immersion depth80 m
Mechanical impurities180 g/m³
Suction systemmultistagesingle stage
Oulet size1"1"
Max. liquid T35 °С35 °С
Motor
Power consumption1000 W1000 W
Mains voltage230 V230 V
Power cable length50 m
General specs
Overheat protection
Country of originRussiaGermany
Impeller materialtechnopolymerstainless steel
Dimensions99x717 mm
Weight13.7 kg
Added to E-Catalogjuly 2015december 2014

Max. performance

The maximum amount of water that the pump can deliver from the well per unit of time. The choice for this parameter depends on two main points: the maximum total consumption and productivity of the well.

The maximum total consumption is the amount of water that is necessary for the simultaneous normal operation of all points of water intake in the system. Different types of consumers (washbasins, showers, washing machines, etc.) require different amounts of water; exact values can be found in special tables or instructions for specific models of household appliances. And the total consumption can be calculated by adding the indicators of all points of water intake. As for the productivity of the well, this is the maximum amount of water that the well can produce in a certain time without draining it. This indicator is usually indicated in the documents for the well; if it is unknown, before buying a permanent pump, it is imperative to determine the productivity — for example, by trial pumping with an inexpensive unit.

Accordingly, the performance of the pump should not exceed the productivity of the well, and it should be at least 50% of the maximum total consumption of the connected water supply system. The first rule allows you to avoid draining the pump and the troubles associated with it, and compliance with the second guarantees a normal amount of water even with a rather intensive water intake. And, of course, do not forget that high performance requires high power and affects the cost of the device.

Max. head

The maximum head is the maximum height to which the pump can raise water during operation (the highest height of the water column that it can support). This parameter describes the pressure created during operation, but since the operation of well pumps is directly related mainly to lifting liquid to a great height, it is easier to use head data in metres than pressure data. However, if necessary, one can be easily translated into another — 10 m of pressure corresponding to a pressure of 1 bar.

When choosing a pump for this parameter, it is not necessary to chase a large pressure, but it is necessary to take into account several factors.

The first of these is the actual height to which the water must be raised; it can be determined by adding the immersion depth of the pump and the height of the highest draw-off point above the ground. The immersion depth is displayed taking into account the so-called dynamic water level in the well — i.e. distance from the surface of the earth to the water surface during continuous operation of the pump (this indicator is greater than the static level, since when the water is pumped out, its level decreases). The dynamic level is usually indicated in the well passport; the pump should be at least a metre deep underwater, plus a margin of 2 – 3 m should be taken as an adjustment for seasonal level fluctuations. Accordingly, for a well with a dynamic depth of 40 m, supplying a house with...an upper draw-off point of 6 m above the ground, the total height difference will be at least 40 + 6 + 4 = 50 m.

The second point is the hydraulic resistance of the system. Even with horizontal pipes, pressure is required to move fluid through them; usually, when calculating, it is assumed that for every 10 m of the pipeline, 0.1 bar, or 1 m of head, is required. For a water supply system inside an average house, resistance losses are about 5 m of head (0.5 bar). Accordingly, if in our example the house is located 10 m from the well, then the margin to overcome the resistance should be at least 1 + 5 = 6 m of head.

And the third point is the pressure at the points of water intake because the pump must not only “push” the water to the tap, but also provide pressure at the outlet. Here, the optimal values may be different depending on the situation. For example, let's take at least 1 atm (1 bar), which corresponds to 10 m of pressure.

Thus, in our example, the pump head must be at least 50 m (height difference) + 6 m (resistance) + 10 m (outlet head) = 66 m. Of course, this is a calculation for the most general case; in special situations, the formulas may differ, so it makes sense to refer to special sources for them.

Max. working pressure

The highest pressure that can occur in the line when the pump is running. Note that usually we are not talking about normal working pressure (it is described by max. head, see above), but about short-term jumps that can significantly exceed standard values. The water supply system to which the pump is connected must normally tolerate not only standard values but also the mentioned jumps — otherwise, an accident may occur. Accordingly, the maximum working pressure is useful for assessing how the safety factor of pipes, fittings and other elements of the system corresponds to the characteristics of the pump.

Max. immersion depth

The greatest depth under water at which the pump is capable of operating normally.

The optimal location for the deep well pump is as close to the bottom as possible (no closer than 1 m, but this margin can be ignored in this case). It is worth choosing according to the maximum depth, taking into account the depth of the well and the static water level in it (the distance at which the water mirror is located from the surface of the earth when the pump is turned off). For example, there is a well 50 m deep with a static level of 20 m; thus, the depth to the bottom is 50 – 20 = 30 m, and if you want to lower the pump to the very bottom, the maximum immersion depth must be at least 30 m — otherwise too high water pressure may damage the unit.

Mechanical impurities

The largest amount of mechanical impurities in the pumped water, which the pump can handle normally. When used with dirty water, this parameter should be taken into account along with the maximum particle size (see above): if the impurity content is too high, the pump may fail even if the individual particle size does not exceed the norm.

Suction system

— Single stage. Suction system with one impeller or similar element. Although this design loses to multistage in terms of efficiency and power, at the same time, its characteristics are quite enough for most entry-level and mid-level pumps; at the same time, single-stage units are simpler and cheaper.

— Multistage. This suction system consists of several impellers (or other similar parts that directly provide suction). Such pumps are noticeably superior to single-stage ones, they provide powerful pressure and are less sensitive to impurities. At the same time, multistage systems are quite expensive.

Power cable length

The length of the standard power cable provided in the design of the pump.

Ideally, the length of this cable should not be less than the maximum immersion depth — this will ensure maximum ease of connection: the connection point of the cable to the mains will be above the water (in the best case, even outside the well), and you will not have to worry about insulation. At the same time, for several reasons, many pumps are equipped with rather short cords — about 1.5-2 m, and not long cables; in such cases, it is necessary to use special waterproof equipment.

Overheat protection

To avoid overheating of the engine, deep well pumps are equipped with a special thermal relay. When it detects a heating temperature above the norm, it automatically turns off the motor, preventing it from failing.

Country of origin

In this case, the country of origin refers to the country from which the product brand originates. A brand, in turn, is a general designation by which the products of a particular company are known in the market. The country of its origin does not always coincide with the actual place of production of the device: to reduce the cost of production, many modern companies transfer it to other countries. It is quite normal for products, for example, of an American or German brand, to be made in Taiwan or Turkey. Contrary to popular belief, this in itself does not lead to a decrease in the quality of the goods — it all depends on how carefully the brand owner controls the production. And many companies, especially large and "famous", monitor the quality very zealously — after all, their reputation depends on it. However, the range on the market is not so great. In addition to East European pumps, there are models from Italy and China.