United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Circulation Pumps

Comparison Grundfos ALPHA2 L 25-40-180 4 m
1 1/2"
180 mm
vs Wilo Stratos-D 50/1-8 8 m
DN 50
250 mm

Add to comparison
Grundfos ALPHA2 L 25-40-180 4 m 1 1/2" 180 mm
Wilo Stratos-D 50/1-8 8 m DN 50 250 mm
Grundfos ALPHA2 L 25-40-180 4 m
1 1/2"
180 mm
Wilo Stratos-D 50/1-8 8 m
DN 50
250 mm
from $118.99 up to $163.28
Outdated Product
from $2,100.08 up to $2,225.99
Outdated Product
TOP sellers
Main functioncentral heatingcentral heating
Designsingle headtwin head
Pump typecentrifugalcentrifugal
Rotor typewetwet
Specs
Max. flow2400 L/h26000 L/h
Max. head4 m8 m
Max. operating pressure10 bar10 bar
Minimum fluid temperature2 °С-10 °С
Max. fluid temperature110 °С110 °С
Features
stepless adjustment
automatic operating mode
 
control panel
stepless adjustment
automatic operating mode
display
 
Motor
Max. power consumption22 W550 W
Mains voltage230 V230 V
Shaft arrangementhorizontalhorizontal
Shaft materialstainless steel
Connection
Connection typethreadflange
Inlet/outlet arrangementcoaxiallycoaxially
Inlet1 1/2"DN 50
Outlet1 1/2"DN 50
More specs
Pump housing materialcast ironcast iron
Impeller materialplastic
Country of brand originDenmarkGermany
Protection classIP42IP44
Insulation classFF
Port-to-port length180 mm250 mm
Weight25 kg
Added to E-Catalogoctober 2015may 2015

Design

— Single head. The classical design provides one chamber with a working wheel. Among these pumps, there are models of almost any power and performance. Other things being equal, single pumps are cheaper than twin-head pumps. However they have a higher probability of failure, but in most cases, this is not of decisive importance, and the overall reliability is quite sufficient for both domestic and many professional tasks.

Twin head. Twin models are equipped with two impellers; in fact, such a unit consists of two pumps connected in parallel. It provides an increased degree of reliability compared to single designs: the twin-head pump continues to work even with a complete failure of one half (although the performance, of course, is reduced). In addition, it is easier to ensure good performance — as a result, even the most modest units of this type are capable of delivering about 6-7 thousand litres per hour. The reverse side of these advantages is the complexity of the design and, accordingly, the high cost; therefore, it is worth paying attention to such models in the case when high reliability and maintaining performance in case of malfunctions are critical for you.

Max. flow

The maximum flow of a pump is the amount of liquid it can pump in a certain amount of time.

Features of choosing the optimal performance option depend primarily on the purpose of the pump (see above). For example, for DHW recirculation models, the pump performance should not exceed the performance of the water heater. If the water heater is capable of delivering 10 litres per minute to the DHW circuit, then the maximum pump performance will be 10*60=600 L/h. The basic formula for calculating the performance of a heating system takes into account the power of the heater and the temperature difference at the inlet and outlet, and for the cold water system — the number of points of water intake. More detailed information about the calculations for each application can be found in special sources, and it is better to entrust the calculations themselves to professionals.

Max. head

The head can be described as the maximum height to which a pump can lift liquid through a vertical pipe without bending or branching. This parameter is directly related to the pressure that the pump produces: 10 m of head approximately corresponds to a pressure of 1 bar (do not confuse this parameter with operating pressure — see more about it below).

The head is one of the key specs for most circulation pumps. Traditionally, it is calculated based on the difference in height between the location of the pump and the highest point of the system; however, this principle is relevant only for units that boost the pressure of cold water(see "Suitable for"). Circulation pumps for heating and DHW work with closed circuits, and the optimal pressure depends on the total hydraulic resistance of the system. Detailed calculation formulas for the first and second cases can be found in special sources.

Minimum fluid temperature

The lowest fluid temperature at which the pump is capable of operating normally.

Almost all pumps can normally transfer cool water, regardless of the purpose (see above); therefore, for normal household use, this parameter is not critical and for some models, it may not be indicated at all. But if you need the ability to work with liquids with temperatures below 15 °C, you should pay close attention to the minimum temperature. Some models that can be used with antifreeze normally tolerate even temperatures below zero.

Features

— Number of speeds. The number of speeds provided in the design of the pump. Each speed corresponds to its performance value (see above). The options could be:
  • 1 speed. There are no adjustments in such models; when turned on, the pump can operate only at one speed. This is the simplest and most inexpensive option, due to the absence of additional elements (regulators) in the design. Of course, it is convenient only in cases where the unit must operate at full capacity every time it is turned on.
  • 2 speeds. 2 speeds give the user some degree of choice: the pump does not have to be turned on at full power — when it is not required, the unit can be run at reduced power to save electricity and not wear out the mechanisms beyond what is necessary.
  • 3 speeds. The largest number of adjustments found in modern pumps — it makes no sense to provide a larger number for many reasons. It gives even more options for setting operation parameters than 2 speeds.
  • Stepless adjustment. This option implies the ability to set the regulator to any position from minimum to maximum (in some models, fixed settings may also be provided, but only as an additional option). It provides maximum freedom and precision in the choice of operating mode. However, it significantly affects the price; and the real need for smooth adjustment occurs quite rarely.
Automatic operating mode.... The essence of this function differs depending on the purpose of the device (see above). So, in models for increasing the pressure of cold water, the automation turns on the pump when the tap is opened and turns it off when it is closed — a special sensor reacts to the movement of water. In models for heating and domestic hot water, automation is responsible for adjusting the operating parameters — for example, when screwing the valves and reducing the flow rate, the pump can reduce the pressure, as well as, for additional functions, such as an on-off timer. Anyway, this feature makes life easier for the user, eliminating the need to perform certain operations manually and adding new features to the pump; but the specific set of these features depends on the model.

Display. Various additional information can be displayed on the display: operating mode, performance settings, water temperature, set timers, error messages and much more. It makes management more convenient and intuitive. Pumps usually use the simplest form of black and white LCD screens, but this is quite sufficient for the purposes mentioned.

Control panel. In this case, the control panel means a panel that has a switch with a choice of operating modes between automatic (see above) and manual. Accordingly, the presence of several modes almost necessarily means the presence of a control panel. But the speed switches themselves are not considered for this function.

Max. power consumption

The electrical power consumed by the pump during normal operation and maximum performance.

This indicator directly depends on performance — after all, for pumping large volumes of water, an appropriate amount of energy is needed. And the power depends on two main parameters — electricity consumption and the load on the power grid, which determines the connection rules. For example, pumps with a power of more than 5 kW cannot be connected to ordinary household sockets; more detailed rules can be found in special sources.

Shaft material

It is the material from which the motor shaft in the pump is made.

— Cermet. It is a material that combines metals and their alloys with non-metallic components. In modern pumps, different types of cermets can be used, differing in price and quality; usually, the features in each case directly depend on the price category of the unit. However, it is well suited for household models with relatively low performance but is poorly suitable for professional use. Therefore, in pumps of more than 15,000 litres per hour, cermet shafts are rarely used.

— Stainless steel. This material is highly durable and reliable, due to which it is found in almost all categories of pumps — from relatively simple to professional, the performance of which is in the tens of thousands of litres per hour. However, it is somewhat more expensive than cermets.

Connection type

The type of connection used to connect the pump to the pipeline.

- Thread. Traditional thread is used in plumbing. This option is typical for thin-walled pipelines that do not require high performance and, therefore, are found mainly in household pumps of relatively low power.

- Flange. The flange looks like an extension, usually in the form of a disk, located at the connection point. When connected, the pump flange and the pipe flange are tightly pressed against each other and tightened with bolts, providing a reliable and tight connection. This design is used in thick-walled pipelines, and therefore flanged pumps are usually of the middle and upper class and have high performance.

For a normal connection, the type of connection provided in the pump must match that provided in the pipes. At the same time, there are adapters from one type to another, which can be used in extreme cases.

Inlet

The size of the inlet provided in the design of the pump. For plumbing threads (see Connection), the size is traditionally indicated in inches and fractions of an inch (for example, 1" or 3/4"), for flanges, the nominal diameter (DN) of the bore in millimetres is used — for example, DN65.

This parameter must match the dimensions of the mount on the pipe to which the pump is planned to be connected — otherwise, you will have to use adapters, which is not very convenient, and sometimes not recommended at all.
Grundfos ALPHA2 L 25-40-180 often compared