United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Circulation Pumps

Comparison Grundfos UPS 32-120 F 9 m vs Grundfos UPS 15-60-130 5.8 m
1"

Add to comparison
Grundfos UPS 32-120 F 9 m
Grundfos UPS 15-60-130 5.8 m 1"
Grundfos UPS 32-120 F 9 mGrundfos UPS 15-60-130 5.8 m
1"
from $363.95 up to $587.56
Outdated Product
from $95.69 up to $121.96
Outdated Product
TOP sellers
Main functioncentral heatingcentral heating
Designsingle headsingle head
Pump typecentrifugalcentrifugal
Rotor typewetwet
Specs
Max. flow12500 L/h3300 L/h
Max. head9 m5.8 m
Max. operating pressure10 bar10 bar
Minimum fluid temperature-10 °С2 °С
Max. fluid temperature120 °С110 °С
Features
3 speeds
3 speeds
Motor
Max. power consumption
400 W /280/245 W/
105 W /100/65 W/
Mains voltage230 V230 V
Shaft arrangementhorizontalhorizontal
Shaft materialstainless steelstainless steel
Connection
Connection typeflangethread
Inlet/outlet arrangementcoaxiallycoaxially
InletDN 321"
OutletDN 321"
More specs
Pump housing materialcast ironcast iron
Impeller materialstainless steelplastic
Country of brand originDenmarkDenmark
Noise level41 dB
Protection classIP44
Insulation classH
Port-to-port length220 mm130 mm
Dimensions (HxWxD)130x123x130 mm
Weight17.3 kg2.3 kg
Added to E-Catalogoctober 2015november 2014

Max. flow

The maximum flow of a pump is the amount of liquid it can pump in a certain amount of time.

Features of choosing the optimal performance option depend primarily on the purpose of the pump (see above). For example, for DHW recirculation models, the pump performance should not exceed the performance of the water heater. If the water heater is capable of delivering 10 litres per minute to the DHW circuit, then the maximum pump performance will be 10*60=600 L/h. The basic formula for calculating the performance of a heating system takes into account the power of the heater and the temperature difference at the inlet and outlet, and for the cold water system — the number of points of water intake. More detailed information about the calculations for each application can be found in special sources, and it is better to entrust the calculations themselves to professionals.

Max. head

The head can be described as the maximum height to which a pump can lift liquid through a vertical pipe without bending or branching. This parameter is directly related to the pressure that the pump produces: 10 m of head approximately corresponds to a pressure of 1 bar (do not confuse this parameter with operating pressure — see more about it below).

The head is one of the key specs for most circulation pumps. Traditionally, it is calculated based on the difference in height between the location of the pump and the highest point of the system; however, this principle is relevant only for units that boost the pressure of cold water(see "Suitable for"). Circulation pumps for heating and DHW work with closed circuits, and the optimal pressure depends on the total hydraulic resistance of the system. Detailed calculation formulas for the first and second cases can be found in special sources.

Minimum fluid temperature

The lowest fluid temperature at which the pump is capable of operating normally.

Almost all pumps can normally transfer cool water, regardless of the purpose (see above); therefore, for normal household use, this parameter is not critical and for some models, it may not be indicated at all. But if you need the ability to work with liquids with temperatures below 15 °C, you should pay close attention to the minimum temperature. Some models that can be used with antifreeze normally tolerate even temperatures below zero.

Max. fluid temperature

The highest liquid temperature that the pump is capable of operating normally.

The possibility of using the unit directly depends on this parameter (see "Suitable for"): for example, models for heating systems must tolerate a temperature of at least 95 °C, and for DHW supply — at least 65 °C. Well, anyway, this parameter should not be exceeded: an overheated pump will fail very quickly, and the consequences of this can be very unpleasant.

Max. power consumption

The electrical power consumed by the pump during normal operation and maximum performance.

This indicator directly depends on performance — after all, for pumping large volumes of water, an appropriate amount of energy is needed. And the power depends on two main parameters — electricity consumption and the load on the power grid, which determines the connection rules. For example, pumps with a power of more than 5 kW cannot be connected to ordinary household sockets; more detailed rules can be found in special sources.

Connection type

The type of connection used to connect the pump to the pipeline.

- Thread. Traditional thread is used in plumbing. This option is typical for thin-walled pipelines that do not require high performance and, therefore, are found mainly in household pumps of relatively low power.

- Flange. The flange looks like an extension, usually in the form of a disk, located at the connection point. When connected, the pump flange and the pipe flange are tightly pressed against each other and tightened with bolts, providing a reliable and tight connection. This design is used in thick-walled pipelines, and therefore flanged pumps are usually of the middle and upper class and have high performance.

For a normal connection, the type of connection provided in the pump must match that provided in the pipes. At the same time, there are adapters from one type to another, which can be used in extreme cases.

Inlet

The size of the inlet provided in the design of the pump. For plumbing threads (see Connection), the size is traditionally indicated in inches and fractions of an inch (for example, 1" or 3/4"), for flanges, the nominal diameter (DN) of the bore in millimetres is used — for example, DN65.

This parameter must match the dimensions of the mount on the pipe to which the pump is planned to be connected — otherwise, you will have to use adapters, which is not very convenient, and sometimes not recommended at all.

Outlet

The size of the outlet provided in the design of the pump. The value of this parameter is completely similar to the size of the inlet (see above).

Impeller material

It is the material from which the impeller is made. It is the main part of the pump, which provides pressure due to movement.

Plastic. This material is inexpensive in itself, and it is easy to process, due to which it is distinguished by low cost. In addition, plastic is not subject to corrosion. On the other hand, it is considered the least reliable of all materials used in modern pumps and, therefore, is used in relatively inexpensive models that are not designed for serious loads. The exception to this rule are special high-strength polymers but they are rare.

Stainless steel. As the name suggests, stainless steel is virtually corrosion-resistant. However, this is not its only advantage — this material is very durable and reliable, and due to this, it is used even in powerful high-performance models.

Cast iron. This material is in many ways similar to steel — in particular, it is considered very reliable — but it has a slightly higher weight. On the other hand, in most cases, this is not a noticeable drawback, but cast iron costs a little cheaper than stainless steel.

Brass. An alloy based on copper and zinc which has a golden colour. The varieties used in circulation pumps are highly resistant to corrosion, they surpass even stainless steel. Therefore, this option is well suited for...water with a high oxygen content. The disadvantage of brass can be called a rather high cost.