Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Recuperators & Ventilation Recovery

Comparison Cooper&Hunter CH-HRV5K vs Gree FHBQ-D5-K

Add to comparison
Cooper&Hunter CH-HRV5K
Gree FHBQ-D5-K
Cooper&Hunter CH-HRV5KGree FHBQ-D5-K
Outdated Product
from $870.72 up to $1,117.52
Outdated Product
TOP sellers
System typecentralizedcentralized
Ventilation typerecuperatorrecuperator
Mountingsuspendedsuspended
Mounting diameter197 mm
Specs
Minimum air flow (recuperation)300 m³/h
Maximum air flow (recuperation)500 m³/h500 m³/h
Number of fan speeds3
Maximum noise level39 dB39 dB
External static pressure100 Pa100 Pa
Type of heat exchangerplateplate
Heat exchanger efficiency68 %72 %
Minimum operating temperature-15 °C
General specs
Remote control
Power consumption in ventilation mode262 W262 W
Mains voltage230 V230 V
Country of originChinaChina
Dimensions800x306x879 mm800x306x879 mm
Weight45 kg45 kg
Added to E-Catalogaugust 2017july 2016

Mounting diameter

The diameter of the holes intended for connecting air ducts to the ventilation unit. The more performant the air ventilation unit, the more air the ducts must pass and the larger, usually, the mounting holes. For wall-mounted models (see above), this parameter determines the size of the channel that must be drilled into the wall to accommodate the unit.

Number of fan speeds

The number of speeds at which the fans of the air ventilation unit can operate.

The presence of several speeds allows you to choose the actual performance of the installation, adjusting it to the specifics of the current situation: for example, in a production room, you can reduce the ventilation intensity during the night shift, where there are fewer people than in the daytime. And the more speeds provided in the device (with the same performance range) — the more choice the user has, the easier it is to find the mode that best suits current needs.

Note that if the minimum and maximum of the air flow are indicated in the specs, but the number of speeds is not given, this does not necessarily mean smooth adjustment. On the contrary, most often such models are regulated traditionally, in steps, but for some reason, the manufacturer decided not to specify the number of speeds in the characteristics.

Heat exchanger efficiency

Efficiency of the heat exchanger used in the heat exchanger of the supply and exhaust system (see "Features").

Efficiency is defined as the ratio of useful work to the energy expended. In this case, this parameter indicates how much heat taken from the exhaust air, the heat exchanger transfers to the supply air. The efficiency is calculated by the ratio between the temperature differences: you need to determine the difference between the outdoor air and the supply air after the heat exchanger, the difference between the outdoor and exhaust air, and divide the first number by the second. For example, if at an outside temperature of 0 °С, the temperature in the room is 25 °С, and the heat exchanger produces air with a temperature of 20 °С, then the efficiency of the heat exchanger will be (25 – 0)/(20 – 0)= 25/20 = 80%. Accordingly, knowing the efficiency, it is possible to estimate the temperature at the outlet of the heat exchanger: the temperature difference between the inside and outside must be multiplied by the efficiency and then the resulting number is added to the outside temperature. For example, for the same 80% at an outdoor temperature of -10 °C and an internal temperature of 20 °C, the inflow temperature after the heat exchanger will be (20 – -10)*0.8 + -10 = 30*0.8– 10 = 24 – 10 = 14 °C.

The higher the efficiency, the more heat will be returned to the room and the more savings on heating will be. At the same time, a highly efficient heat e...xchanger is usually expensive. Also note that the efficiency may vary slightly for certain values of the external and internal temperatures, while manufacturers tend to indicate the maximum value of this parameter — accordingly, in fact, it may turn out to be lower than the claimed one.

Minimum operating temperature

The lowest outdoor air temperature at which the ventilation unit can be safely used; more precisely, the minimum inlet air temperature at which the unit can operate normally, without malfunctions, for an indefinitely long time.

It is worth choosing according to this parameter taking into account the climate in which it is planned to use the unit: the device should normally tolerate at least the average winter temperature, and it is best to have some reserve in case of a harsh winter. However, many modern models allow operation at -10 °C and below, and in the most cold-resistant ones, the temperature minimum can reach -35 °C. So choosing a unit for a temperate climate is usually not a problem. Also note that if an installation that is ideally suited for all other parameters cannot cope with low temperatures, the situation can be corrected by using an additional heater at the inlet of the ventilation system.

Note that if the minimum temperature is not indicated in the characteristics, it is best to proceed from the fact that this model requires a temperature not lower than 0 °C. In other words, in cold weather, it is worth using only the equipment for which this possibility is directly stated.
Cooper&Hunter CH-HRV5K often compared
Gree FHBQ-D5-K often compared