Dark mode
United Kingdom
Catalog   /   Tools & Gardening   /   Garden Power Tools   /   Engines

Comparison Weima WM186FBE vs Weima WM178F

Add to comparison
Weima WM186FBE
Weima WM178F
Weima WM186FBEWeima WM178F
from $442.00
Outdated Product
from $286.97 up to $297.92
Outdated Product
TOP sellers
Main
The model also has several modifications with different types of shaft.
Details
Fueldieseldiesel
Power8.85 hp5.9 hp
Power6.5 kW4.4 kW
Shaft typesplinespline
Shaft positionhorizontalhorizontal
Shaft rotationcounterclockwisecounterclockwise
Shaft speed3600 rpm3600 rpm
Shaft diameter25 mm
Specs
Operating cycle4-stroke4-stroke
Capacity418 cm³305 cm³
Number of cylinders11
Coolingairair
Piston diameter86 mm78 mm
Piston stroke72 mm64 mm
Fuel tank volume5.5 L3.5 L
Crankcase oil capacity1.65 L1.1 L
Specific fuel consumption285 g/kW*h
Start typeelectric startermanual
General
Dimensions530x510x575 mm480x440x520 mm
Weight52 kg33 kg
Added to E-Catalognovember 2016november 2016

Power

The rated power of the engine in horsepower (in fact, the maximum power that the unit can produce in normal operation, without overloads). Despite the popularity of the designation in watts (see below), horsepower (hp) is still quite widely used to indicate the power of internal combustion engines. 1 HP is approximately 735 watts.

In general, the more powerful the engine, the more speed and tractive effort it is able to develop. On the other hand, this indicator directly affects the weight, dimensions, and most importantly, the cost of the unit, while the real need for high power is relatively rare. Therefore, it is worth choosing according to this indicator, taking into account the features of the planned application; specific recommendations on the selection of an engine for a specific technique and tasks can be found in special sources. We only note that models of the same power can differ in speed and "torque"; see "Shaft speed" for details.

In general, performance up to 8 hp. are considered low, up to 13 hp. — medium, more than 13 hp — high.

Power

The rated power of the engine (the highest power it can deliver in normal operation) in kilowatts. Initially, the power of internal combustion engines (ICE) was usually denoted in horsepower, but now it is also common to record in watts / kilowatts; this, in particular, makes it easier to compare the power of internal combustion engines and electric motors. Some units can be converted to others: 1 hp approximately equal to 0.735 kW.

In general, the more powerful the engine, the more speed and tractive effort it is able to develop. On the other hand, this indicator directly affects the weight, dimensions, and most importantly, the cost of the unit, while the real need for high power is relatively rare. Therefore, it is worth choosing according to this indicator, taking into account the features of the planned application; specific recommendations on choosing an engine for a specific technique and tasks can be found in special sources. We only note that models of the same power can differ in speed and "torque"; see "Shaft speed" for details.

Shaft diameter

The diameter of the motor shaft, more precisely, the diameter of its outer part, located behind the housing. Data on the diameter of the shaft is needed to clarify the compatibility of the engine with the mechanism for which it is bought.

Now on the market there are shafts with the following diameters: 16 mm, 19 mm, 20 mm, 22 mm, 25 mm.

Capacity

The working volume of all engine cylinders. Usually, other things being equal, a larger volume allows you to achieve higher power, but increases fuel consumption and affects the dimensions of the unit.

Piston diameter

The engine piston diameter is a reference parameter — in fact, this data is required very rarely, usually, for repairs and other specific tasks that the average user usually does not deal with at all.

Piston stroke

The distance that an engine piston travels from one extreme point to another. In general, it is a rather specific characteristic and is rarely required in fact (for most ordinary users, it is never needed at all in the entire “life” of the engine).

Fuel tank volume

The nominal volume of the engine's fuel tank is the maximum amount of fuel that can be safely filled there. Knowing the fuel consumption (see below), it is possible to estimate the operating time of the unit on a single refill by the volume of the tank by dividing the tank capacity by the consumption.

Large fuel tanks, on the one hand, allow you to work for a long time without refueling, on the other hand, they significantly affect the dimensions and weight of the engine. Also note that many models allow refueling "on the go." When choosing a tank volume, manufacturers take into account these points, as well as the “weight category” and the specifics of the engine application.

Crankcase oil capacity

The regular volume of oil in the crankcase, in fact, is the amount of oil necessary for the normal operation of the unit (some deviations are allowed, but only within small limits). This parameter allows you to estimate how much oil is required to fill or refill the engine lubrication system.

Specific fuel consumption

Specific consumption in this case can be described as the amount of fuel consumed by the engine per hour per 1 kW of generated power. The lower this figure, the higher the efficiency of the engine and the more economical it is. Specific consumption data is especially useful for comparing units with different capacities.
Weima WM186FBE often compared