United Kingdom
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   AV Receivers

Comparison Yamaha RX-V777 vs Yamaha RX-V477

Add to comparison
Yamaha RX-V777
Yamaha RX-V477
Yamaha RX-V777Yamaha RX-V477
from £640.00 
Outdated Product
from $465.36 up to $494.00
Outdated Product
TOP sellers
Device typeAV ReceiverAV Receiver
CPU
DAC frequency192 kHz192 kHz
Audio DAC24 bit24 bit
Auto sound calibration
Auto level
Surround sound in headphones
Ultra HD4K4K
UpscalingUltra HD (4K)
3D
Multi Zone
Tech specs
Number of channels7.25.1
Power per channel
95 W /8 ohm, THD 0.09%/
80 W /6 ohm, THD 0.09%/
Signal to noise ratio
110 dB /Phono - 96 дБ/
110 dB
Acceptable acoustic impedance4 Ohm6 Ohm
Frequency range
10 – 100000 Hz /+0, -3 дБ/
10 – 100000 Hz /+0, -3 дБ/
Bi/Tri-amping
Media player and tuner
Tuner and playback
AM/FM radio
USB drive
network streaming audio
internet radio
AM/FM radio
USB drive
network streaming audio
internet radio
Communications (interface)
Interfaces
AirPlay
Wi-Fi
LAN
MHL
DLNA
AirPlay
 
LAN
 
DLNA
Decoder support
Decoders
Dolby Digital Plus
Dolby TrueHD
Dolby Pro Logic IIx
Dolby Digital EX
DTS 96/24
DTS-HD Master Audio
DTS ES Matrix 6.1
DTS ES Discrete 6.1
DTS Neo:6
Dolby Digital Plus
Dolby TrueHD
Dolby Pro Logic IIx
Dolby Digital EX
DTS 96/24
DTS-HD Master Audio
DTS ES Matrix 6.1
DTS ES Discrete 6.1
DTS Neo:6
Inputs
RCA4 pairs3 pairs
Coaxial S/P-DIF2 шт2 шт
Optical2 шт1 шт
HDMI6 шт6 шт
Composite4 шт4 шт
Component2 шт2 шт
Phono
Control input (IR)
Outputs
RCA2 pairs1 pairs
HDMI2 шт1 шт
Composite2 шт2 шт
Component1 шт1 шт
On headphones6.35 mm (Jack)6.35 mm (Jack)
Preamplifier (Pre-Amp)
Control output (IR)
Trigger output1 шт
Front panel
Headphone output
USB port
HDMI input
Linear
 /mini-Jack/
Composite
General
Power consumption300 W260 W
Standby consumption0.1 W0.3 W
Dimensions (WxDxH)435х364х171 mm435x315x161 mm
Weight10.5 kg8 kg
Added to E-Catalogdecember 2014december 2014

Upscaling

The ability to increase the resolution of the video signal processed by the receiver - if the original video resolution is lower. Depending on the capabilities of the receiver, in particular its HDMI ports, upscaling to Ultra HD 4K and upscaling to Ultra HD 8K may occur.

The principle of upscaling is that a relatively low-resolution video is supplemented with the required number of pixels using special algorithms. Due to this, when playing such a video, the quality of the “picture” is noticeably higher than without upscaling (although somewhat lower than that of content originally recorded in UltraHD). It makes sense to specifically look for a receiver with this function if you plan to use it with a 4K or 8K screen.

Multi Zone

The possibility of using the receiver for simultaneous transmission of signals from different sources to screens and speakers located in different places (zones). For example, in a large house, you can simultaneously stream a movie from a Blu-ray player to a screen in a large room, a TV show to a TV in the kitchen, and a radio programme to speakers in a library. Another option for using Multi-Zone is entertainment centers with several rooms of different types (for example, a cinema hall, a roller skating rink and a cafe).

Number of channels

The maximum number of channels that the receiver can output to external speakers. This parameter is specified for all types (see above): even AV processors that do not have an amplifier as such are often equipped with a very extensive set of audio processing tools (and this set is sometimes even wider than in models with amplifiers).

The most popular options by the number of channels today are as follows:

— 2.1. The simplest option found in modern AV receivers is the classic two-channel stereo sound, supplemented by a third channel for a subwoofer. It is worth noting here that the "volume" of such a sound is very limited: it allows you to simulate the shift of the sound source to the left or right, but does not cover the space on the sides and behind the listener. Receivers of this kind are usually entry-level devices.

— 3.1. Such a system is usually the 2.1 described above, supplemented by a third front speaker — in the centre. This provides a more authentic sound from the front. And for some 3.1 systems, design tricks are claimed that allow them to be used for surround sound, similar to 5.1. Rear channels in such systems are simulated by reflecting sound from the walls behind the user. Of course, the sound accuracy is noticeably lower than that of a full-fledged 5.1, but this option may be optimal in tight spaces where there is no space for a full set of six-channel acoustics.

5.1. The most popular surround sound format that can provide the effect of "environment". 5 main channels include a centre, two front (left-right) and two rear (similarly), a unit indicates a separate low-frequency channel for a subwoofer.

— 5.2. Sound format similar to 5.1 above, except for two channels for subwoofers instead of one. This improves the quality of the bass sound, which can be useful for films with a lot of special effects, live performance recordings, etc.

— 6.1. A sound format with an expanded number of main channels relative to the classic 5.1. The sixth main channel in this format is usually the centre back — this increases the accuracy of the sound transmission in the back of the stage.

— 6.2. 6.1 version of the format described above, supplemented by a second subwoofer; this improves the quality of low frequency transmission and allows you to cover a larger area.

— 7.1. With this sound format, five main channels (similar to the 5.1 system described above) are supplemented with two more. There are a lot of options for installing speakers for these channels — for example, these can be additional speakers above two front or two rear speakers, two separate side speakers, an additional “centre” pair on the rear channel, etc. Anyway, an increase in the number of channels makes it possible to achieve a more accurate transmission of “surround” sound compared to 5.1, however, much less content has been released for such systems.

— 7.2. A variation on the 7.1 format (see above) that allows the use of two separate subwoofers; this increases the accuracy of the transmission of low frequencies and expands the possibilities for their adjustment.

— 8.4. A specific variant found in single models of AV receivers. It is not so much a generally accepted sound format as an illustration of advanced configuration options: up to 8 main speakers and up to 4 subwoofers can be connected to the device, which gives very extensive fine-tuning options (however, such options are not cheap).

— 9.1. One of the most advanced surround sound formats today: it includes 5 classic main channels (similar to a 5.1 system) and 4 additional ones, the location of which can be different — for example, two side speakers and two upper ones above the left and right front, or even 4 speakers, directed towards the ceiling. The 9.1 format allows you to achieve very high fidelity of multi-channel audio transmission, but it is expensive, difficult to set up, and very little content has been released for such systems.

— 9.2. Modification of the above 9.1 format, supplemented by a second subwoofer for more accurate and high-quality reproduction of low-frequency sound.

— 11.1. Further, after 9.1, expansion and improvement of the idea of multi-channel sound. Usually in 11.1 systems, the five "classic" main channels (see 5.1) are supplemented with six more in the following way: two speakers to the left and right of the centre (in addition to the left and right front), two height speakers above the main front and two more — above main rear. This significantly increases the accuracy of surround sound transmission and adds the ability to shift it not only horizontally, but also vertically. However, the price and complexity of setting up such systems is appropriate, so they are designed more for the professional sphere (for example, cinema halls of entertainment centers) than for home use.

— 11.2. Systems almost identical to those described above 11.1, but supplemented by a second subwoofer. The latter is useful not only for reliability, but also for covering a vast area.

— 12.4. A top-of-the-line AV receiver option that is designed to handle all existing surround sound formats (including "true" 3D sound) and offers extremely wide customization options (albeit at an appropriate price).

— 13.2. Another format typical for luxury AV receivers and similar to 12.4 described above (with the exception of differences in the number of channels, which are not critical in this case).

— 15.1. A very rare and expensive option, designed for the use of mainly advanced acoustic systems — in particular, the halls of small cinemas.

Note that this paragraph indicates the most advanced sound format that the receiver is capable of working with; the general set also includes simpler options. For example, 7.1 systems usually handle 5.1 without any problems, not to mention stereo.

Power per channel

the maximum sound power that can be delivered by the power amplifier (if the receiver has one, see "Type") per speaker channel. It is worth noting here that in this case it is customary to indicate the so-called RMS (Rated Maximum Sinusoidal), or rated power. Rated is considered the highest power that the amplifier is guaranteed to be able to produce without interruption for an hour without any failures or breakdowns. Short-term jumps in the signal level can significantly exceed this value, but the main indicator is still the rated power.

The power of the amplifier largely determines the sound volume of the speaker system connected to the device. In fact, the loudness also depends on the characteristics of the speakers — sensitivity, impedance, etc.; however, other things being equal, the same acoustics on a more powerful amplifier will sound louder. In addition, this parameter also affects the compatibility of the speakers and the amplifier — it is believed that the difference in the nominal powers of these components should not exceed 10-15% (and ideally, the powers should generally match). And since different rooms require speakers of different power, this also affects the choice of amplifier for a particular environment; specific recommendations on the ratio of room characteristics and acoustic power can be found in special sources.

Also note that if the amplifier can operate with a load of different resistance (see..."Permissible acoustic impedance"), then for different options the power per channel will be different — the lower the resistance, the higher the power. In the characteristics, in this case, the maximum value of this parameter is usually indicated — that is, the power at the minimum allowable resistance.

Acceptable acoustic impedance

The lowest impedance of the loudspeakers of the speaker system, with which the amplifier is able to work normally. The nominal impedance of the speakers, also referred to as the term "impedance", is one of the key parameters in the selection of audio system components: for normal operation, it is necessary that the speaker impedance match the characteristics of the amplifier. If the speaker impedance is greater, the sound volume will decrease significantly, if it is less, distortion will appear in it, and in the worst case, even overloads and breakdowns are possible. Therefore, in the characteristics of receivers, it is usually the minimum resistance that is indicated — after all, connecting a load of too low impedance is fraught with more serious consequences than too high.

Bi/Tri-amping

The ability of the receiver to work in Bi-amping and/or Tri-amping mode.

The basic principle of both of these modes is that the audio signal is divided into several frequency bands (LF and HF for Bi-amping, in the case of Tri-amping, mid frequencies are separated separately), and each band is processed by its own amplifier and output to its own specialized set of speakers. . In this way, a noticeable improvement in sound quality can be achieved. However, note that the specific implementation of this function in AV receivers may be different. The simplest option involves two or three built-in power amplifiers, each of which outputs the entire audio range to its own set of connectors. To such a device, you need to connect an external crossover (frequency filter) or speakers with built-in filters for each frequency band. More advanced receivers may have their own built-in crossovers, in which case only part of the frequency range is output to each amplifier with a set of connectors; this eliminates the need for external frequency filters. However, anyway, to use Bi/Tri-amping, you will need speakers that support this connection format.

Interfaces

- AirPlay. Technology for transmitting multimedia data via a wireless connection ( Wi-Fi). Developed by Apple, it is intended mainly for broadcasting content from various Apple devices (primarily portable gadgets) to compatible external devices. Allows you to transfer audio files (in audio streaming mode, see “Tuner and playback” for more details), as well as images, text data and even video. The presence of AirPlay in the receiver will allow you to connect Apple equipment with support for this technology to it for direct playback, as well as display information about files on an external screen (for example, a TV) - song name, artist name, etc.

- AirPlay 2. The second version of the AirPlay technology described above, released in 2018. One of the main innovations introduced in this update was support for the multi-room format - the ability to simultaneously broadcast several separate audio signals to different compatible devices installed in different locations. Thus, you can, for example, turn on the next episode of your favorite series from your iPhone on the TV in the living room, and relaxing music from your iPod in the kitchen, etc. In addition, AirPlay 2 received a number of other improvements - improved buffering, the ability to stream to stereo acoustics, as well as support for voice control via Siri.

- Chromecast.... Original name: Google Cast. Technology for broadcasting content to external devices, developed by Google. Allows you to transmit video and audio from a PC or mobile device to the AV receiver; broadcasting is usually carried out via Wi-Fi, while the receiver and the signal source must be on the same Wi-Fi network (with the exception of Chromecast media players). Chromecast technology supports two modes - actual broadcasting through special applications (available for Windows, macOS, Android and iOS) and “mirroring” content opened in the Google Chrome browser on an external screen.

- Wi-Fi. A wireless interface used primarily for building computer networks. Accordingly, AV receivers may need its presence primarily to implement network functions - streaming audio, Internet radio (see “Tuner and playback”), AirPlay (see above), DLNA (see below). Connecting to computer networks can also be done through a wired LAN interface(see below), but Wi-Fi is more convenient due to the absence of wires and the ability to work through obstacles (including walls) at a distance of several tens of meters. In addition, in some models, this technology can also be used to communicate directly with other devices - for example, to use a smartphone or tablet as a remote control, or to broadcast live video using Miracast technology or another similar format.

Bluetooth. Direct wireless communication technology between various electronic devices; operates at a range of about 10 m, although some specific operating formats provide a longer range. Technically, it can be used for different purposes, depending on the protocols supported by a particular device; In AV receivers, two protocols are most often found - A2DP for wireless broadcasting of audio signals and AVRCP for remote control. In the first case, we are usually talking about transmitting a signal from an external device (smartphone, laptop, etc.) to the receiver; theoretically, the opposite option is also possible - broadcasting sound to Bluetooth headphones or acoustics, however, for a number of reasons, this format of operation is almost never found in AV receivers. AVRCP, in turn, allows you to use an external gadget (for example, the same smartphone) as a remote control.

- LAN. A standard interface for wired connection of various equipment (including AV receivers) to computer networks, incl. to access the Internet. Due to the presence of a wire, it is less convenient to connect than the Wi-Fi described above. On the other hand, a LAN connection wins in terms of connection reliability and actual data transfer speed - especially if there are many wireless devices on the network and Wi-Fi channels are busy (which is often the case, since Wi-Fi modules are very popular in modern electronics ). Therefore, for working with large volumes of data - for example, watching high-definition video via DLNA (see below) - LAN is better suited.

— RS-232. A wired interface that originally appeared in computer technology. In AV receivers, it can be called a service connector: content is not transmitted through this connector, but through it you can connect the device to a computer and remotely change settings, as well as update the firmware.

— MHL. High-speed wired interface for transmitting multimedia data (video and audio) from mobile devices to external screens. The bandwidth allows you to work with high or even ultra-high resolution images, as well as multi-channel audio. Also, when connected, the gadget can be charged. In mobile devices, the MHL signal is output via a standard microUSB port; and the role of the input in AV receivers (and other stationary equipment) is played by the HDMI connector (see below) - however, not every connector, but only one that is initially compatible with MHL and has the appropriate marking. Adapters are available for connecting to regular HDMI, but additional functions (like charging) may not be available with this connection.

- DLNA. A technology used to connect various electronic devices into a single digital network with the ability to directly exchange content. Devices for which support for this standard is declared are able to communicate effectively regardless of the manufacturer. An AV receiver with DLNA can, for example, play a movie directly from the hard drive of a computer in the next room, or transfer photos from a smartphone to the TV. Connecting to the Network can be done either wired (LAN) or wirelessly (Wi-Fi, see above).

- Roon Tested. Roon Tested accreditation means the AV receiver is compatible with the popular audiophile music streaming platform Roon. Certified models have undergone a series of tests and meet the quality standards required to operate Roon flawlessly. This ensures convenient management and organization of content within the platform.

— Coordination of Remote control. A function that allows you to connect the AV receiver to another device (for example, a Blu-ray player or external amplifier) and control both devices with one remote control. When purchasing equipment with such a function, it is necessary to clarify compatibility - as a rule, only equipment from one manufacturer can work in such a “bundle”, and even in such cases, their own nuances are possible upon agreement.

— Voice assistant. Receiver support for voice assistant. The most popular assistants these days are:
  • Google Assistant
  • Apple Siri
  • Amazon Alexa
However, other solutions may also emerge. In any case, it is worth noting that we are not talking about an assistant built into the receiver itself, but about compatibility with external devices that have this function (for example, a smartphone or tablet). But even such compatibility allows you to give commands to the receiver by voice - this is often more convenient than more traditional control methods. The specific set of supported commands and languages may vary depending on the voice assistant and its specific version.

RCA

The number of analogue stereo RCA inputs provided in the design of the AV receiver. The more such inputs there are, the more transmitting devices can be simultaneously connected to the receiver. Thanks to this, when choosing between them, you do not have to reconnect cables — just set the signal source in the receiver settings.

By itself, the RCA connector (colloquially — "tulip") can be used in different interfaces. However, in this particular case, we are talking about a linear audio input responsible for an analogue audio signal. RCA is the most popular connector used in modern audio equipment for such inputs; it allows you to connect the receiver to an external audio source such as a CD player.

Note that connectors of this type are usually counted in pairs; in other words, one input consists of two RCA connectors. This is due to the fact that in this case only one channel of analogue audio can be transmitted over one wire; accordingly, two RCA jacks are required for stereo transmission.

Optical

The number of optical inputs provided in the design of the receiver.

The optical interface allows digital audio to be transmitted and is in fact a variation of the S/PDIF standard using a fiber optic data link (TOSLINK cable). In terms of bandwidth, it is completely similar to the coaxial interface (see above) — in particular, it supports multi-channel audio — however, it compares favorably with its complete insensitivity to electromagnetic interference. On the other hand, due to their design, optical cables are sensitive to sharp bends and mechanical stress — accidentally stepping on such a cable can make it unusable. In addition, they have a maximum length limit of about 6.1 m.

As for the quantity, the presence of several inputs allows you to connect several signal sources to the receiver at once with the corresponding outputs and switch between them through software settings without fiddling with switching cables.
Yamaha RX-V777 often compared
Yamaha RX-V477 often compared