United Kingdom
Catalog   /   Tools & Gardening   /   Power Tools   /   Routers & Trimmers

Comparison Makita RT0700CX2 vs Bosch GKF 600 Professional 060160A100

Add to comparison
Makita RT0700CX2
Bosch GKF 600 Professional 060160A100
Makita RT0700CX2Bosch GKF 600 Professional 060160A100
Compare prices 1Compare prices 5
TOP sellers
Typeverticaledging
Specs
Power710 W600 W
Min. speed10000 rpm
Max. speed30000 rpm33000 rpm
Max. collet diameter8 mm8 mm
Stroke35 mm
Functions
soft start
speed control
consistent speed
 
 
 
General
Power sourcemains (230 V)mains (230 V)
In box
guide rail
case (bag)
guide rail
case (bag)
Power cord length4 m
Noise level93 dB95 dB
Weight1.8 kg1.5 kg
Added to E-Catalognovember 2017july 2015

Type

The general design features and purpose of the router depend on the type.

Vertical. The classic, most common type of milling cutter. Usually, vertical devices consist of the motor itself and a sole of a special design that provides support during operation. The sole is often made adjustable in height, which allows you to change the distance that the cutter protrudes and, accordingly, the depth of processing. However, this change can be done in another way.

Edge. As the name suggests, this type of router is mainly used for edging and chamfering. Such units are lighter and more compact than vertical ones, which, in particular, facilitates work in cramped conditions. On the other hand, they are less performant and have less customization options (in particular, they are very rarely equipped with depth adjustment).

Lamella. Specialized milling cutters designed for cutting grooves for lamellas — fasteners in the form of thin plates. The design of such a tool is such that each groove is cut literally in one movement — this greatly speeds up and simplifies the work. For other purposes, lamellar routers, usually, are not intended.

Additive. Similar to the lamellar ones described above, filler mills are used to cut out “seats” for fasteners. However, in this case, these places are intended for dowels — o...blong products with a round or elliptical section (also known as chopiks or dowels) and are not grooves, but holes, usually quite deep.

— To remove varnish. The purpose of this type of milling cutter is clear from the name: they are used to remove paint and varnish coatings; the principle of their work is similar to angle grinders ("grinders"). Varnish stripping jobs often deal with fairly large areas to be treated, so this type of tool usually allows the use of large cutters that provide a large working width. In this case, the engine power may be low, because. the load on the cutter in this case is small.

— Milling motor. This type can be described as minimally equipped routers — consisting of a motor in a housing, a spindle and a collet and devoid of a sole, guide rails and other similar devices. Usually, such tools have an elongated body and a rather small size and weight, which gives quite extensive possibilities for their use — from working as an impromptu manual engraver to installation on an automated machine. However, in most cases, router motors will still require additional attachments.

— For cutting tiles. Another type of milling cutter, the purpose of which is described by the name. By themselves, such devices have an oblong body and work similarly to drills; however, the case is not limited to round holes along the diameter of the cutter — the cutter can also cut a line in the material, for example, to create a hole for an exhaust fan, or to cut a fragment of a non-standard shape. Such features are indispensable when working with tiles.

— Disk. Milling cutters using a cutting nozzle in the form of a disk. Their main purpose is to cut grooves. By design and principle of operation, milling machines of this type are similar to circular saws, however, an equal sign cannot be put between these tools. Unlike saws, circular routers do not cut through the material—they only create a groove of a certain depth, usually a V-profile, in the surface. Also, they use milling cutters instead of saw blades. One of the most popular applications of such a tool is cutting fold lines on aluminium sheets.

Power

The total power of the router, more precisely, the engine installed in it. The higher this indicator, the more productive the device is, the better it copes with complex work, the more force on the cutter (torque) it provides during operation, and the greater the spindle speed can be (although a powerful tool is not necessarily high-speed). On the other hand, high power significantly affects the dimensions, weight and price of the tool, plus power consumption and network load increase accordingly. In addition, high torque in some cases (for example, with delicate processing) is frankly undesirable. Therefore, a tool should be chosen according to this parameter, taking into account the real needs and the specifics of the planned work.

There are three main categories of milling cutters in terms of power: light (up to 700 W), designed mainly for simple household work; medium (up to 1500 W), able to cope not only with domestic, but also with most professional tasks; and heavy (1500 W or more), used in cases where high power is critical. However, this gradation is true only for routers (see "Type"), other varieties have their own specifics: for example, lamellar models, in principle, do not need high power.

Min. speed

The slowest spindle speed (in revolutions per minute) provided by the router motor.

For different jobs, the optimal spindle speed (and, accordingly, the cutter) will also be different. For example, hard materials like stone require fast rotation, but wood does not; some types of nozzles work better at high speeds, others at low speeds, etc. Detailed recommendations for each specific case can be found in special sources. Here we note that the smallest value of the minimum number of revolutions found in modern milling cutters is about 3000 – 5000, and in the most "fast" models this figure can exceed 15000. When choosing, pay attention not so much to the minimum rotation speed as to the total speed range — how it corresponds to the planned tasks.

Max. speed

The highest spindle speed provided by the router motor. Measured in revolutions per minute. For models that do not have speed control (see "Functions"), this paragraph indicates the standard number of revolutions.

For different work, the optimal speed of rotation of the spindle (and, accordingly, the cutter) will also be different. For example, hard materials like stone require fast rotation, but wood does not; some types of nozzles work better at high speeds, others at low speeds, etc. Detailed recommendations for each specific case can be found in special sources. When choosing, it is worth paying attention not so much to the maximum rotation speed as to the general range of speeds - how much it corresponds to the planned tasks. We only note that in models with a large allowable cutter diameter (see below), the maximum rotation speed can be relatively low - the working edge of a large cutter moves quickly even at low speeds, and for effective acceleration of such a nozzle, too much power would be needed.

Stroke

The distance by which the height of the cutter can change relative to the support platform of the router, in other words, to what depth the working nozzle can be lowered relative to the upper position. This parameter is used for vertical and edge models (see "Type"); however, edge routers with height adjustment are very rare. In fact, the amount of travel not only describes the maximum working depth provided by the tool, but also indicates the presence of depth adjustment; for models without such adjustment, this parameter is not indicated at all.

As for specific numbers, for simple household work, a stroke of 25–30 mm is considered quite sufficient, and in a more serious tool, values of 70–80 mm can be found.

Functions

Soft start. The presence of a soft start engine in the design of the milling cutter. A feature of most modern electric motors is that when connected to the network directly, without control circuits, at the time of start-up, there is a sharp jump in current through the motor. This, on the one hand, creates voltage fluctuations in the mains (which can “knock out” fuses or become fatal for some devices operating nearby), on the other hand, it leads to a sharp jerk of the tool, due to which it can be released from hands (and this cause damage to surrounding objects and even injury). This function also limits the current at the moment of starting the motor. Due to this, the speed increases smoothly, without jerking the tool, and the power grid is not subjected to excessive overloads.

Adjustment of frequency of rotation. The presence of a speed controller in the design of the milling cutter. This function allows you to change the spindle speed, adjusting it to different types of work — for example, to effectively cut hard material, you may need a high speed, and with soft woods, you can work at low speeds. Tools with speed control will be useful especially for those who have to deal with a wide variety of materials. In this case, the range of such adjustment may be different.

Microlift. The presence in the design of the router of a system for fine-tuning...the depth with an accuracy of 0.1 mm. The standard setting with the limit pin is very coarse, as the errors are quite large. The microlift is used where it is important to set the depth very accurately. It is implemented mainly by means of a threaded connection that limits the vertical downward movement, or is completely integrated into the vertical travel design, where unlocking is not needed to make the necessary adjustments.

Backlight. The presence of a lighting system in the design of the router — in fact, an ordinary flashlight that facilitates work in dimly lit places. The need for backlighting may arise even in daylight or bright artificial lighting — the place of work is quite often in the shade (for example, from the head of the operator himself).

— Maintain momentum. The presence in the design of the milling cutter of a system that automatically adjusts the engine operation mode depending on the load on the working nozzle — in such a way that the rotational speed remains constant, does not fall under load and does not increase at idle. Thanks to this adjustment, a constant quality of processing is ensured, practically independent of the pressure on the nozzle, wear of the nozzle and the tool itself is reduced, as well as overall energy consumption.

Power cord length

The length of the power cord provided in the design of the router.

The long cord, on the one hand, allows the tool to easily “reach” quite remote sockets, provides additional freedom of action and eliminates the need to switch to another socket once again. On the other hand, it can be inconvenient if the power source is not far away and the excess cord has to be stored on the floor, chair, etc.; and with insufficient length, it is quite possible to use an extension cord. Therefore, in most modern routers, the length of the cord is about 2 – 4 m — this is quite enough to reach the outlet in most cases, and at the same time not so much that there is inconvenience due to the large excess.

Noise level

The noise level produced by the router during operation. This parameter is quite approximate, since the actual “loudness” depends not only on the characteristics of the tool itself, but also on the material and shape of the workpiece being processed, the type of cutter, the speed of work, etc. Therefore, in fact, the noise level may differ both up and down; in the characteristics, a certain average value is given, by which, however, it is quite worthwhile to navigate.

The “quieter” the tool, the more comfortable it will be to work with it, the less likely it is that the operator will need protective headphones. At the same time, we note that routers, by definition, are quite noisy — the most “quiet” models give out about 75 dB. Also, keep in mind that the decibel is a non-linear quantity, so it is best to use comparison tables when estimating the noise level.

Here is a simplified version of such a table for the range in which most modern routers operate:

75 dB — scream, loud laughter at a distance of 1 m;
80 dB — motorcycle engine, mechanical alarm at the same distance;
85 dB — a loud cry at the same distance;
90 dB — demolition hammer at a distance of 1 m, a freight car at a distance of 7 – 10 m;
95 dB — subway car (inside or at a distance of about 7 m).
Makita RT0700CX2 often compared
Bosch GKF 600 Professional 060160A100 often compared