United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Power Banks

Comparison TP-LINK TL-PB15600 vs TP-LINK TL-PB10400

Add to comparison
TP-LINK TL-PB15600
TP-LINK TL-PB10400
TP-LINK TL-PB15600TP-LINK TL-PB10400
Outdated Product
from £19.99 
Outdated Product
TOP sellers
Main
Large battery capacity. The presence of a lamp. Manufacturer's warranty 2 years.
Flashlight. Charging two devices. Original ergonomic design. Protective case.
Battery capacity15600 mAh10400 mAh
Real capacity11544 mAh6500 mAh
Battery typeLi-IonLi-Ion
Full charge time5.8 h
Charging gadgets (outputs)
USB A22
Power bank charging
Power bank charging inputs
microUSB
microUSB
Power bank charge current via USB
2.4 A /5V/
2 A /5V/
Features
Bundled cables (adapters)
microUSB
microUSB
Features
flashlight
flashlight
General
Case
Body materialplasticplastic
Dimensions150x61x22 mm88.8x44.3x44.3 mm
Weight340 g241 g
Color
Added to E-Catalogjuly 2017january 2015

Battery capacity

The higher the battery capacity, the more energy the power bank is able to accumulate and then transfer when charging to gadgets connected to it. But it should be borne in mind that not all of the accumulated energy goes specifically to charging – part of it is spent on service functions and inevitable losses in the process of transmission. So in the specifications, the real capacity of the power bank is also often specified. If there is no data on real capacity, then when calculating it is worth proceeding from the fact that it is usually somewhere 1.6 times lower than the nominal one. For example, for a model with a nominal capacity of 10,000 mAh, the actual value will be approximately 6300 mAh.

As for the specific values of the nominal capacity, then in models with the lowest performance it is 5000 – 7000 mAh and even less ; such power banks are suitable as a backup source of energy for 1 – 2 smartphone charging with a not very capacious battery or other similar gadget. The 10,000 mAh solutions are the most popular nowadays – in many cases, this option provides the best price-capacity ratio. The 20,000 mAh and 30,000 mAh options are also very common. But even a capacity of 40,000 mAh or more, thanks to the development of modern...technology, is quite common.

Real capacity

The real capacity of the power bank.

Real capacity is the amount of energy that a power bank is able to transfer to rechargeable gadgets. This amount is inevitably lower than the nominal capacity (see above) — most often by about 1.6 times (due to the fact that part of the energy goes to additional features and transmission losses). However, it is by real capacity that it is easiest to evaluate the actual capabilities of an external battery: for example, if this figure is 6500 mAh, this model is guaranteed to be enough for two full charges of a smartphone with a 3000 mAh battery and smartwatches for 250 mAh.

The capacity in this case is indicated for 5 V — the standard USB charging voltage. At the same time, the features of milliamp-hours as a unit of capacity are such that the actual amount of energy in the battery depends not only on the number of mAh, but also on the operating voltage. In fact, this means that when using fast charging technologies (see below) that involve increased voltage, the actual value of the actual capacity will differ from the claimed one (it will be lower). There are formulas and methods for calculating this value, they can be found in special sources.

Full charge time

The time required to fully charge a battery discharged “to zero”. Features of the charging process in different models may be different, respectively, and the time required for this may differ markedly even with the same capacity.

Fast-charging batteries tend to be more expensive. Therefore, choosing this option makes sense if you do not have much time to replenish your energy supply — for example, for hiking. However, keep in mind that charging at full speed may require a charger that supports certain fast charging technologies (see below).

It must also be said that in most modern batteries, the charging speed is uneven — it is highest at the several first percent from zero, then gradually decreases. Therefore, the time required to replenish the energy supply by a certain percentage will not be strictly proportional to the total claimed charge time; moreover, this time will depend on how much the battery is already charged at the time the procedure starts. For example, charging from 0 to 50% will take less time than from 50 to 100%, although both there and there we are talking about half the capacity.

Power bank charge current via USB

Nominal charge current supported by the power bank when charging its own battery via microUSB, USB type C, or Lightning (see "Battery charging inputs").

This is the maximum and, in fact, the recommended power bank charge current. If the amperes supplied by the power source exceed this value, the charge current will still be limited by the built-in controller to avoid overloading. And using a charger with a lower output current, in turn, will lead to an increase in charging time.

Data on the charge current via USB (Lightning) is especially important due to the fact that modern power banks are usually not equipped with their own chargers for these inputs, and energy sources must be separate. On the other hand, if a high charging speed is not critical for you, you can ignore this parameter: any USB connector is suitable as a power source for the corresponding power bank inputs.

Case

The presence of a case in the delivery set of the power bank.

The case provides additional convenience and safety during storage, and especially when transporting the device: it protects the power bank from dirt, and in some cases from bumps, scratches and other similar troubles. Theoretically, such an accessory can be bought separately or even made; however , the set case is more convenient — it does not require any extra hassle and perfectly matches the dimensions and shape of the device.
TP-LINK TL-PB15600 often compared
TP-LINK TL-PB10400 often compared