Device type
—
Preamplifier. Preamplifiers are designed to initially process a weak signal and bring it to a level sufficient for transmission via a linear interface to a power amplifier (see below). Such models are able to work directly with sound pickups, microphones and other similar devices, may have additional sound correction functions, play the role of switches for connected signal sources, etc., but are not suitable for outputting sound to passive speakers or headphones.
—
Power amplifier. Such models are designed to take the signal processed by the preamplifier and output it to the power sufficient to operate the connected speaker system. They can already work with passive type speakers, but they cannot do without a preamplifier for the input signal. However, it is worth noting here that most modern players are equipped with built-in preamps and can be used directly with power amplifiers.
—
Integrated amplifier. Amplifiers that combine the capabilities of both of the above types in one package. The main advantage of such models is obvious: instead of two specialized devices, you can buy one universal one. This saves money, time and installation space, and reduces the chance of interference as there are no external connecting cables between the preamplifier and main amplifier and the components are usually optimally matched to each other. On the other hand, th
...e integrated model provides fewer options for choosing the option for your own preferences: you have to purchase the device "as is", without the ability to separately select a preamplifier and power amplifier.
— Amplifier-processor. Professional models, typically for live use, are rack mounted and often use Euroblock jacks as Main inputs (see below). In terms of general application, processors are similar to power amplifiers, however, in addition to these features, they are also characterized by an abundance of settings that facilitate the work of sound engineers.
— Subwoofer amplifier. Specialized power amplifiers designed for low-frequency speakers — subwoofers. The design of such models usually provides for crossovers with an upper limit of the transmitted range at the level of 150 – 200 Hz; this allows only “native” frequencies to be fed to the subwoofer and has a positive effect on sound quality. In addition, many amplifiers of this type have specific settings such as phase control.Toroidal transformer
Most modern amplifiers have
toroidal transformers - with a toroid-shaped core, in other words, a donut. This type is considered optimal for amplifiers of any level up to Hi-End: it creates a minimum of "extra" electromagnetic radiation and, accordingly, interference. Some time ago, E-core transformers were also widely used, but they are considered obsolete and are becoming less common today.
Number of channels
The maximum number of channels the amplifier can handle. The choice for this parameter depends primarily on the intended format of using the device.
Most modern amplifiers have
two channels for normal stereo sound, which is enough for listening to music or radio programs. There are also models designed for multi-channel "surround" sound, but they are much less common. This is due to the fact that such sound is most often used as an accompaniment to high-quality video — and therefore a home theater receiver is usually used for processing, rather than a separate audio amplifier.
Among the top-class models, there may be
single-channel amplifiers — they provide maximum opportunities for fine-tuning the sound, but you have to purchase several such devices, one per channel. Another specific variety is amplifiers designed to add a certain number of channels to those already available; the most popular of these options is
3-channel, capable of turning an existing stereo system into a multi-channel one.
Frequency range
The range of audio frequencies that the amplifier is capable of handling. The wider this range, the more complete the overall picture of the sound, the less likely it is that too high or low frequencies will be “cut off” by the output amplifier. However, note that the range of sound audible to a person is on average from 16 Hz to 20 kHz; There are some deviations from this norm, but they are small. At the same time, modern Hi-Fi and Hi-End technology can have a much wider range — most often it is a kind of "side effect" of high-end circuits. Some manufacturers may use this property for promotional purposes, but it does not carry practical value in itself.
Note that even within the audible range it does not always make sense to chase the maximum coverage. It is worth, for example, to take into account that the actually audible sound cannot be better than the speakers are capable of giving out; therefore, for a speaker system with a lower threshold of, say, 70 Hz, there is no need to look for an amplifier with this figure of 16 Hz. Also, do not forget that a wide frequency range in itself does not absolutely guarantee high sound quality — it is associated with a huge number of other factors.
Power per channel (8Ω)
The nominal sound power output by the amplifier per channel when operating with a load having a dynamic resistance (impedance) of 8 ohms. In our catalog, this parameter is indicated for the mode when all channels of the amplifier work under load (see "Number of channels"); in the presence of unused channels, the rated power may be slightly higher, but this mode cannot be called standard.
Rated power can be simply described as the highest output signal power at which the amplifier is able to work stably for a long time (at least an hour) without negative consequences. These are average figures, because in fact, the audio signal is by definition unstable, and individual level jumps can significantly exceed the rated power. However, it is she who is the main basis for assessing the overall loudness of the sound.
This indicator also determines which speakers can be connected to the amplifier: their rated power should not be lower than that of the amplifier.
According to the laws of electrodynamics, with different dynamic load resistance, the output power of the amplifier will also be different. In modern speakers, the standard values \u200b\u200bare 8, 6, 4 and 2 Ohms, and power levels are indicated for them.
Power per channel (6Ω)
The nominal sound power output by the amplifier per channel when a load with a dynamic resistance (impedance) of 6 ohms is connected to it. See Power per Channel (8Ω) for more information on power rating and its relationship to impedance.
Power per channel (4Ω)
The nominal sound power output by the amplifier per channel when a load with a dynamic resistance (impedance) of 4 ohms is connected to it. See Power per Channel (8Ω) for more information on power rating and its relationship to impedance.
Signal to noise ratio
In itself, the signal-to-noise ratio is the ratio of the level of pure sound produced by the amplifier to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level of 70 – 80 dB in modern amplifiers can be considered acceptable, 80 – 90 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio of at least 100 dB is considered mandatory.
If the specifications do not specify for which output the signal-to-noise ratio is indicated, it usually means its value for the linear input (see "RCA (par)"). This is quite enough to evaluate the quality of the device for this parameter. However, some manufacturers indicate it for other inputs — Main, Phono; see below for more on this.
Signal-to-noise ratio (Main)
Signal-to-noise ratio when the amplifier is operating through the Main input. For more details on the value of the signal-to-noise ratio, see the relevant paragraph above, about the Main input — p. "Input to the amplifier (Main)".