SIM card support
Type
of SIM card for which the gadget is designed. SIM cards are required for mobile communication modules, which are mainly found in watch phones and children's beacons (see "Type"). And their types can be:
—
Micro-SIM. Reduced in size and improved, in comparison with the obsolete mini-SIM, a variety of SIM-cards: the dimensions were reduced to 15x12 mm, while the amount of built-in memory and the overall functionality of the chip were slightly expanded.
—
Nano-SIM. The newest and smallest variety of replaceable SIM-cards: it has dimensions of only 12x9 mm.
It is worth noting that nowadays, most mobile operators sell SIM cards that are compatible with all three types of slots at once: the chip itself has a nano-SIM format, and such a card can be installed in a micro-SIM or mini-SIM slot using an adapter frame. So paying attention to the type of SIM card makes sense, first of all, if you already have a "sim card" of a strictly defined format and you do not want to change it.
A separate variety is represented by
e-SIM(Embedded SIM) — non-removable modules that need to be programmed for a particular mobile operator. On the one hand, this creates some inconvenience: to change the number, changing the SIM card can be easier than reconfiguring the e-SIM. On the other hand, e-SIMs are more compact and
...better suited for wearable gadgets, and when you change your number, you do not need to spend money on buying a new card. The compatibility of such a module with the network of a particular operator should be specified separately.Navigation
This block contains both various navigation systems (
GPS, Galileo) and auxiliary features for them (
aGPS,
GPS tracking,
maps,
compass,
altimeter ,
barometer). More about them:
— GPS module. GPS satellite navigation module built right into the watch/tracker. The initial purpose of such a module is to determine the current geographic coordinates; but how this information will be used depends on the specific type and model of the gadget. For example, in some devices GPS is used only for measuring the distance traveled and/or speed of movement, while more advanced models support full navigation and are equipped with built-in maps. In addition, this feature is almost mandatory in children's beacons (see "Type") — it is GPS that is responsible for determining the location of the child.
— aGPS. An auxiliary feature that allows you to speed up the start of the main GPS receiver. To work for its main purpose, such a receiver must update data on the location of navigation satellites; Obtaining this data in the classical way, directly from the satellites themselves, can take quite a long time (up to several minutes). This is especially true for the so-called "cold start" — when the receiver starts up after a long break in opera
...tion, and the data stored in it has become completely outdated. aGPS (Assisted GPS) allows you to receive up-to-date service information from a mobile operator — from the nearest base station (this feature is supported by most operators nowadays). This can greatly speed up the startup process.
— GLONASS. This system is a Russian alternative to the American GPS. However it provides somewhat less accuracy, so GLONASS support is usually provided in addition to the GPS module. Simultaneous use of two systems, in turn, improves positioning accuracy.
— Galileo. European satellite navigation system, created as an alternative to the American GPS. Note that it is under the control of civilian departments, not the military. With a full fleet of 24 active satellites, the system gives an accuracy of up to 1 m in public mode and up to 20 cm with the GHA service. Working in conjunction with GPS, the Galileo system provides a more accurate position measurement, especially in densely populated areas.
— Maps. The feature of displaying topographic maps of the area with heights, relief and types of vegetation on the clock screen. Preinstalled maps are used for visual GPS navigation without being tied to a smartphone. Often, the ability to display maps is implemented in tactical smartwatches with a focus on tourism.
— GPS tracking. Many watches with the possibility of laying routes have the feature of guiding by the GPS track. At the same time, the wearable gadget acts as a navigator around the area, showing the route on the screen and suggesting where it is necessary to turn in one direction or another. Some smartwatches with a pronounced touristic bias also have a “Return Route” programme that allows you to go back along an already traveled route. In GPS tracker mode, trackpoints are usually recorded automatically based on the selected fixing interval. You can also mark a track point manually at any time.
— Compass. A classic compass is a device that indicates the direction to the cardinal points. Wearable gadgets usually use an electronic compass — a miniature magnetic sensor, the data from which, if necessary, are displayed on the display.
— Altimeter. A feature that allows you to determine the current altitude of the user's location. Note that the principle and format of the altimeter may be different. So, some models use barometer data for height measurements, others use information from a GPS sensor; the height itself can be determined relative to sea level, relative to some reference point, or in any of these ways, at the choice of the user. These details should be clarified separately.
— Barometer. A feature that allows you to determine the current atmospheric pressure. One of the applications of the barometer is weather forecasting: for example, a sharp drop in pressure usually signals the approach of bad weather. In addition, information from this sensor can be used to operate the altimeter (see above); and even if the gadget does not have an altimeter, the height difference between two points on the ground can be easily calculated from the pressure difference between them.Remote tracking
The type of remote tracking provided by the kids beacon (see "Type").
Remote tracking allows the parent to follow the map where the child is currently located. To do this, the beacon determines the current coordinates using the GPS satellite system and transmits them to the parent's smartphone or tablet. Actually, the presence of GPS is mandatory for all types of remote tracking, the difference between them is in how the data is transmitted to the parent. The options might be:
— GSM+GPS. Beacons that transmit data only through the mobile network. Note that the name "GSM" is conditional here, such models can fully work in more advanced 3G (UMTS) and 4G (LTE) networks. The main disadvantage of such a connection is the fact that it requires additional financial costs and control over the state of the account, so that the connection does not disappear at an unexpected moment. On the other hand, these costs are low, and mobile networks are available almost everywhere these days.
— GSM+GPS+Wi-Fi. Beacons capable of transmitting information both through mobile networks and through Wi-Fi access points. Due to additional equipment, they are somewhat more expensive than similar models of the GSM + GPS format, but the communication capabilities are more extensive. So, the mobile network in such devices is mainly used as a fallback in case of lack of Wi-Fi — this saves money and battery power. And Wi-Fi, in turn, can b
...e available even where there is no normal mobile network.Size
The size of the display installed in the gadget; for round screens, respectively, the diameter is indicated.
A larger screen, on the one hand, is more convenient to use, on the other hand, it significantly affects the dimensions of the entire device, which is especially critical for wearable gadgets. Therefore, manufacturers choose the display size in accordance with the purpose and functionality of each specific model — so that there is enough space on the screen and the device itself is not too bulky.
It is also worth mentioning that screens with a similar size may have different aspect ratios. For example, traditional smartwatches are usually equipped with square or round panels, while in fitness trackers, screens are often made elongated in height.
PPI
The density of dots on the screen of the gadget, namely, the number of pixels that are on each inch of the panel vertically or horizontally.
The higher the PPI, the higher the detail of the screen, the clearer and smoother the image is. On the other hand, this indicator affects the price accordingly. Therefore, the higher the density of points, the more advanced, usually, this gadget is in terms of general capabilities. However, when choosing a screen, manufacturers take into account the general purpose and functionality of the device; so that even a small number of PPIs usually does not interfere with comfortable use.
Watch face protection
The material from which the transparent cover of the display is made.
—
Plastic. Inexpensive, moreover, quite durable and impact-resistant material: even with a strong impact, the plastic is more likely to crack than crumble into fragments. At the same time, scratches easily appear on such a surface, and over time it inevitably becomes cloudy. Because of this, plastic is found predominantly in inexpensive wearable gadgets.
—
Glass. In this case, it can mean both classic silicate glass (the same as, for example, in windows), and some original types of impact-resistant glass that are not related to
Gorilla Glass(see below). Regular glass costs more than plastic, but not by much, and it looks better and stays clear longer due to its scratch resistance. The main disadvantages of this material are fragility and a tendency to crumble into sharp fragments upon impact. Impact-resistant glass types are devoid of this drawback to one degree or another, but they are also more expensive. According to the price category of the gadget, you can quite accurately determine what kind of glass it uses — ordinary or shock-resistant.
—
Sapphire. The coating made of synthetic sapphire is used exclusively in premium-class gadgets — this is due to the complexity of its production and, accordingly, the high cost. On the practical s
...ide, sapphire is extremely scratch resistant (it is only possible to scratch such glass with a diamond or special tools), but at the same time it is fragile and easily breaks from impact.
— Gorilla glass. A family of shock-resistant glass types created by Corning and widely used in modern electronics, including wearable gadgets. In addition to strength, Gorilla Glass is also distinguished by good scratch resistance, while being relatively inexpensive (by the standards of such a coating), which has led to their popularity. However, the specific properties of such glass depend on its version; Here are the options that are relevant for modern wearable devices:
- Gorilla Glass v3. The oldest current version was released in 2013. Nevertheless, even such a coating is noticeably superior to traditional glass (not to mention plastic) in terms of transparency and scratch resistance.
- Gorilla Glass v4. Version released in 2014. A key feature was that the development of this coating focused on impact resistance (whereas previous generations focused mainly on scratch resistance). As a result, the glass turned out to be twice as strong as in version 3, despite the fact that its thickness was only 0.4 mm.
- Gorilla Glass SR+. The first version of Gorilla Glass, designed specifically for smartwatches and other miniature wearable gadgets; presented in 2016. According to the creators, the scratch resistance of such coatings approaches those of sapphire glass while maintaining the main advantages of Gorilla Glass — high strength and transparency. In general, for this material, superiority over "alternative options" is claimed by 70% in terms of strength specs and by 25% in terms of optical properties.
- Gorilla Glass DX. Another type of glass, specially designed for wearable devices. It was released in 2018 at the same time as the DX+ version (see below). Of the key improvements in Gorilla Glass DX, in particular, increased anti-reflective properties and an increase in the contrast level of the visible image by 50% are announced; the latter, among other things, allows you to reduce the actual brightness and, accordingly, the power consumption of screens without compromising image quality, which is especially important for miniature wearable devices. And this material differs from the DX+ type coating, on the one hand, by lower scratch resistance, and, on the other hand, by higher anti-reflective specs.
- Gorilla Glass DX+. Almost the same as the original version of DX, related to the same specialization — wearable wearable gadgets and other miniature devices. At the same time, DX + has a higher scratch resistance, but has slightly worse anti-reflective specs. Otherwise, these types of coverage are almost identical.
Extra features
—
Built-in player. The presence of a player in the smartwatch allows you to use the gadget to listen to music. There is no need to connect to the phone for this. The songs will play directly from the watch. Therefore, these devices must necessarily have an impressive (as for a watch) amount of storage and be able to connect to headphones (for connection with headphones).
—
Light sensor. A sensor that monitors the brightness of ambient light. One of the most popular ways to use this feature is to auto-adjust the brightness of the display: in bright light, it increases so that the image remains visible, and at dusk it decreases, which reduces eye strain and energy consumption. In addition, other more specific features may be provided — for example, turning on the screen when pulling back the sleeve of clothing.
—
WiFi. A technology originally used to access the Internet via wireless access points, but more recently also used for direct communication between two devices (such a connection has several advantages over traditional Bluetooth). In wearable gadgets, the first option is most often provided, although the second is also found. However, the specific uses of Wi-Fi may be different depending on the device: accessing websites and various Internet services, remote communication with smart home systems, remote control of digital cameras and other electr
...onics, transmission of the GPS- coordinates via Internet (in children's beacons), etc.
— NFC. Wireless communication technology over short distances (up to 10 cm). The methods of its application, including in wearable devices, may be different. One of the more popular options is using contactless payment (see below); however, the presence of such a function does not hurt to verify separately. Another common feature is the simplification of Bluetooth connection with a smartphone or tablet that also has NFC: instead of manual configuration, it is enough to bring one device to another — and they will automatically establish a connection, all that remains is to confirm it. Other ways of interaction may also be possible, for example, launching a “sports” application on a smartphone when bringing a fitness tracker to it. And theoretically, more specific options for using NFC are also allowed — for example, as a travel pass, ID, etc. Actually, in many models of wearable gadgets, the set of these methods is limited only by installed applications.
— Contactless payment. The possibility of using a wearable gadget for contactless payment. This feature is found only in models with NFC (see above); it actually turns the device into an analogue of a credit card with a chip and allows you to pay without taking the card out of your wallet — just bring your hand with the gadget to the terminal reader. This provides not only additional convenience, but also security. So, bringing the watch to the terminal is definitely easier than reaching into your pocket or purse for a credit card — especially if your hands are busy shopping. And instead of a traditional card, from which an attacker can copy basic details such as a number, CVV code and expiration date (for example, by “peeping” them with the built-in camera), a gadget is used that transmits this data in encrypted form and does not display it explicitly anywhere.
To use contactless payment, usually, you need to synchronize your gadget with your smartphone and set up such payment in the Google Pay or Apple Pay system. But to make payments, a smartphone is no longer required — many wearable devices are able to perform this feature completely autonomously (although this possibility still needs to be specified separately).
— Accelerometer. A sensor that determines the direction of gravity, as well as the accelerations acting on the device. This allows you to track two parameters at once: the current position in space and various physical influences (like tapping or shaking). Most often, the accelerometer is responsible for two main features: automatic rotation of the image on the screen, as well as the operation of the pedometer (in fact, the presence of such a sensor is almost guaranteed to mean the presence of a pedometer, see "Possible measurements"). However, there are other ways to use this sensor — for example, rejecting an incoming call when shaking the watch, turning on the screen when tapping on it, etc.
— Gyroscope. A device that allows you to track the turns of the gadget in one direction or another. Typically used in conjunction with an accelerometer. The gyroscope improves the accuracy of positioning in space (which has a positive effect on the quality of the pedometer and other similar functions), and also provides additional options for managing gestures. However, the specific applications of this sensor are highly dependent on the model.
— Camera. The watch/bracelet has its own built-in camera; its location and purpose differs from model to model. In some devices, the lens is located on the front panel, above the screen, and the matter is limited only to video communication and taking selfies, while others allow you to shoot “classic” photos or videos. At the same time, it is worth noting that anyway, the specs of such cameras are usually very limited — for example, the resolution rarely exceeds 2 megapixels, and autofocus is provided only in the most advanced models.
— Flashlight. Built-in flashlight — usually in the form of a small LED mounted directly in the case. Usually, it has a relatively modest brightness, but it can still be useful for simple tasks like lighting your path at night, lighting in a garage or basement, etc.Device charging
The method of charging the battery provided in the gadget.
—
MicroUSB. Charging via standard microUSB port. The main advantage of this option is the ability to charge from any microUSB cable or charger with such a connector, not necessarily branded. On the other hand, the connector itself is quite large by the standards of wrist devices and can significantly affect the increase in the dimensions of the gadget.
—
USB type C. A compact version of the USB interface with a reversible design that allows the plug to be inserted in either direction. The USB type C specification provides for a number of advanced power options - in particular, various fast charging technologies have been developed for this connector.
-
Branded connector. Charging via a cable that connects to the watch using the original proprietary interface. The other end of the cable, as a rule, has a standard interface - most often USB, which allows you to use any computer port or network adapter with such a connector for charging. Branded connectors can be smaller than microUSB, and fit better into the layout of the clock. However, for charging, as a rule, you have to use only original accessories, including branded cradles-stands, which are intended mainly for permanent stay in one place.
-
Wireless. The main advantage of wireless c
...harging technology is the absence of any connectors - which is important, given the miniature size of wrist gadgets. At the same time, this method takes more time and significantly affects the cost of the device. Note that wireless charging is not contactless: the corresponding chargers can take the form of a stand or platform on which you need to put the watch, or a magnet attached to the back cover of the gadget, etc.
- Magnetic. Charging via a cable with convex metal contacts that are magnetized to the connector on the back cover of the wearable gadget. The magnetic contact group has no gaps, which improves the dust and moisture protection qualities of the smartwatch, and the charging plug itself is attracted to the magnetic connector, eliminating the need to look for the correct position for connecting the cable.
- USB A connector. The presence of a built-in connector allows you to connect the gadget directly to the charger, laptop, power bank without using additional cables.Source of power
The type of battery that is installed in the watch/bracelet.
— Li-Ion (lithium-ion). Battery of the original format, made using Li-Ion technology. Such batteries combine compact dimensions with good capacity, they are unpretentious in use, durable and reliable, and among the significant drawbacks, one can only note some sensitivity to low temperatures. As a result, this technology is one of the most popular in modern portable electronics, including wearable accessories.
— Li-Pol (lithium polymer). An updated and improved version of Li-Ion technology (see above). With the same basic advantages, lithium-polymer cells have even greater capacity with the same small dimensions and weight, they hold voltage more stable as they are discharged and are more resistant to low temperatures. At the same time, these batteries are somewhat more expensive.
— Battery. Powered by a replaceable battery — usually a compact "tablet" of one type or another. Such batteries have a relatively low capacity and are usually made disposable, that is, they cannot be recharged. Therefore, such power is found mainly among two categories of devices: in fitness trackers without a display, as well as watches of a classic design with a minimum of smart features that do not require a lot of energy.