Dark mode
United Kingdom
Catalog   /   Tools & Gardening   /   Measuring tools   /   Laser Measuring Tools

Comparison Intertool MT-3052 vs TOPEX 29C908

Add to comparison
Intertool MT-3052
TOPEX 29C908
Intertool MT-3052TOPEX 29C908
Outdated Product
from $122.32
Outdated Product
TOP sellers
Main
360° horizontal projection. Rubberized body. High battery life.
3 spirit levels for alignment in planes
Typelaser levelrotary level
Suitable for360° area360° area
Specs
Measurement range10 m30 m
Accuracy0.5 mm/m0.5 mm/m
Self-leveling angle4 °
Leveling time5 с
Rotational speed0 – 500 rpm
Operating temperature-10 – 40 °C
Tripod thread1/4"
Laser characteristics
Diode emission635 nm650 nm
Laser colourredred
Laser class2
Vertical projections1
Beam angle (vertical)180 °
Horizontal projections11
Beam angle (horizontal)360 °360 °
Features
Compensator locking
Spirit level
General
IP protection rating5454
Power source4хАА4хАА
Operating time15 h
In box
 
 
 
non chargeable batteries
 
holder
tripod
case / pouch
non chargeable batteries
glasses
Dimensions90x69x111 mm
Weight332 g
Added to E-Catalogaugust 2017january 2015

Type

General type of device.

Modern levels differ primarily in their operating principle: they are optical(traditional or digital) and laser(conventional and rotary). At the same time, the specific specialization depends on the principle of operation - laser and optical devices differ in purpose and application. In turn, the main function of rangefinders is clear from the name - determining distances. The difference here also lies in the principle of operation: most modern rangefinders are laser, but there are also more specific ultrasonic devices.

Here is a more detailed description of each of these varieties:

— Optical level. Levels have a traditional design - in the form of a kind of specialized telescope mounted on a tripod and supplemented with measuring scales (including in optics, in the operator’s field of view), as well as devices for horizontal alignment (compensators, levels). Such devices are used to determine height differences using the so-called geometric leveling method, for which leveling rods are also used - special strips with measuring scales installed vertically. And the general principle of this method is as follows: the operator points the level’s telescope, set horizontally, at the vertical leveling staff, and determines...which mark on the staff is opposite the main “sighting mark” of the level - this mark will correspond to the actual height of the device. More information about this method, including specific measurement techniques, can be found in special sources. Here we note that optical levels are excellent primarily for working in large areas of open areas; they are used mainly in such fields as geodesy and cartography. But for work where you have to deal with relatively short distances (primarily construction in small areas), such devices are not suitable; However, they are quite complex and expensive, especially compared to laser devices. So, relatively few optical levels are produced nowadays.

— Digital level. In fact, it is an advanced version of the optical levels described above. Externally, they differ primarily in that instead of a regular telescope, such devices are equipped with a digital camera that displays the image on the screen on the control panel. Such levels are used in the same way as “regular” optical ones, but the operating procedure itself is automated and supplemented with a number of advanced functions. Thus, in most models, the operator does not need to manually count the slats, record the results and carry out calculations - the device itself recognizes the recorded marks, stores them in memory and processes the received data, displaying the final result. It is often possible to save information to a memory card or other media, copy it to a PC, or even connect the level to a laptop and use special software (for example, mapping) directly during measurements. On the other hand, such opportunities are not cheap: digital levels are several times, or even orders of magnitude, more expensive than traditional optical ones. So, in general, devices from this category are high-quality devices, designed primarily for professional use - when you often have to deal with large volumes of work, in light of which speed and ease of data processing are of key importance.

— Laser level. A kind of laser projectors that display marks on walls and other surfaces - usually in the form of lines, but there are also models with a dot function (for more details, see “Point projections”) or even only dot ones (see “Purpose”). A classic laser device actually combines the functions of a level and a building level: it can be used both for the above-described geometric leveling using slats, and for constructing planes and marking lines (some models are equipped with mechanisms that allow you to arbitrarily select the angle of inclination). Such devices are well suited for working at short distances, including indoors; and thanks to their relatively simple and inexpensive design, they are very popular, especially in construction. At the same time, we note that some models can have a fairly significant measurement range - up to 50 m on their own and up to 150 m or more using special receivers.
We emphasize that this paragraph includes traditional laser levels, in which the mark line is formed by scattering the beam with a special prism. Rotary models that operate by rotating the emitter are included in a separate section and are described below.

— Rotary level. A variation of the laser levels described above, in which the plane is “drawn” not due to the scattering of the laser beam in the prism, but due to the rapid rotation of the emitter. As a result, the trace from the beam merges into one continuous line for the eye. Rotary levels are usually not cheap and most of them are professional devices designed to work on large areas. The measurement range without a receiver is usually several tens of meters, and with a receiver - up to several hundred. In light of this, when using such devices, you need to be especially careful about observing safety rules - getting a powerful laser beam into your eyes can cause harm to your health, and even the reflection of a laser “bunny” from some surfaces often causes discomfort. So, it is highly advisable to use safety glasses or masks in the operating area of the rotary device.

- Laser rangefinder. Devices for measuring distances using a laser beam. The key advantage of such devices over rulers, tape measures, etc. is that you do not need to move during the measurement process - just place the device at the starting point and point the beam at the object, the distance to which you want to determine. At the same time, the range of action in many models reaches 100 m or more, and the error does not exceed a few millimeters, or even fractions of a millimeter. In addition, modern laser rangefinders can be equipped with various additional functions such as automatic calculation of area and volume, summation of distances, fixation of minimum and maximum, etc. The disadvantages of such devices include reduced efficiency in the presence of fog, heavy dust or other similar contaminants air, as well as difficulties in measuring distances to glass and other transparent objects that transmit the laser beam rather than reflect it. However, these moments are not so often critical, and in terms of performance characteristics, laser devices are noticeably superior to ultrasonic ones. Therefore, this type of rangefinder is the most popular in our time.

— Ultrasonic rangefinder. Range finders using ultrasound; In such devices, a laser is also often installed, but it is intended solely for precise pointing at the desired object and is not used for measurements. In any case, rangefinders of this type are good because their effectiveness practically does not depend on the purity of the air and the type of surface on the object being measured: ultrasound works perfectly through dust, smoke, fog, etc., and is also reflected perfectly from glass and other transparent materials. laser materials. On the other hand, in terms of “range” and accuracy, such devices are noticeably inferior to laser ones: the measurement range in them does not exceed 15 - 20 m, and the error is calculated not in millimeters, but in percentages - usually about 0.5 - 1% (which, for example, at a distance of 10 m corresponds to an actual error of 5 - 10 cm). As a result, rangefinders of this type are much less common than laser ones these days.

Measurement range

The range at which the device remains fully operational without the use of additional receivers (see below); in other words, the radius of its action without auxiliary devices.

In some models, a range may be specified that shows the minimum ( 3 cm, 5 cm) and maximum measurement ranges. But in most cases, only the maximum value is indicated.

The specific meaning of this parameter is determined by the type of instrument (see above). So, for optical levels, the measurement range is the greatest distance at which the operator can normally see the divisions of a standard leveling staff. For laser levels, this parameter determines the distance from the device to the surface on which the mark is projected, at which this projection will be easily visible to the naked eye; and in rangefinders we are talking about the greatest distance that can be measured. Typically, the measurement range is indicated for ideal conditions - in particular, in the absence of impurities in the air; in practice, it may be less due to dust, fog, or vice versa, bright sunlight "overlapping" the mark. At the same time, tools of the same type can be compared according to this characteristic.

Note that it is worth choosing a device according to the range of action, taking into account the features of the tasks that are planned to be solved with its help: after all, a large measurement range usually significa...ntly affects the dimensions, weight, power consumption and price, but it is far from always required. For example, it hardly makes sense to look for a powerful laser level at 30-40 m if you need a device for finishing work in standard apartments.

Self-leveling angle

The maximum deviation from the horizontal position that the device is able to correct "by its own means".

Self-leveling in itself greatly simplifies the installation and initial calibration of levels (see "Type"), which often (and for optical models — mandatory) need to be set horizontally to work. With this function, it is enough to install the device more or less evenly (in many models, special devices are provided for this, such as round levels) — and fine tuning in the longitudinal and transverse planes will be carried out automatically. And the limits of self-leveling are usually indicated for both planes; the higher this indicator, the easier the device is to install, the less demanding it is to the initial placement. In some models, this figure can reach 6 – 8 °.

Leveling time

Approximate time it takes for the self-levelling mechanism to bring the level to a perfectly level position.

For more information on such a mechanism, see Self-Level Limits. And the actual time of its alignment directly depends on the actual deviation of the device from the horizontal. Therefore, in the characteristics, usually, the maximum alignment time is given — that is, for the situation when in the initial position the device is tilted to the maximum angle along both axes, longitudinal and transverse. Since the levels are far from being installed in this position, in fact the speed of bringing to the horizontal is often higher than the claimed one. Nevertheless, it makes sense to evaluate different models precisely according to the figures stated in the characteristics — they allow you to estimate the maximum amount of time that will have to be spent on alignment after the next movement of the device. As for specific indicators, they can vary from 1.5 – 2 s to 30 s.

Theoretically, the shorter the alignment time, the better, especially if there are large volumes of work ahead with frequent movements from place to place. However, in fact, when comparing different models, it is worth considering other points. First, we reiterate that the rate of leveling is highly dependent on the leveling limits; after all, the greater the deviation angles, the more time it usually takes for the mechanism to return the level to the horizontal. So, to directly compare w...ith each other in terms of the speed of self-leveling, it is mainly those devices in which the permissible deviation angles are the same or differ slightly. Secondly, when choosing, it is worth considering the specifics of the proposed work. So, if the device is to be used frequently on very uneven surfaces, then, for example, a model with a leveling time of 20 s and self-levelling limits of 6 ° will be a more reasonable choice than a device with a time of 5 s and limits of 2 °, since in In the second case, a lot of time will be spent on the initial (manual) installation of the device. And for more or less even horizontal planes, on the contrary, a faster device may be the best option.

Rotational speed

The speed of rotation of the emitter in a rotating laser level (see "Type"). If the device has several speed options, they are indicated through an oblique line (for example, “0/300/600”), and if the adjustment is carried out smoothly, the entire speed range is given in the characteristics (for example, “0 — 600”).

As the distance from the device to the “target” increases, the length of the path that the laser mark must travel with each revolution also increases. Accordingly, the greater the range of work, the higher the rotation speed should be; otherwise, the line visible to the eye will noticeably flicker, or even completely turn from a line into a rapidly running point. At the same time, an increase in speed increases power consumption and reduces battery life, and also leads to additional wear of the device mechanisms. Therefore, at short distances, a high rotation speed is unnecessary.

In light of all this, manufacturers usually select the maximum rotation speed taking into account the range of the device — so that at such a range the laser effectively forms a mark and at the same time does not rotate too fast. So when choosing a particular model, there is usually no need to pay attention to maximum speed. But what you should look at is the possibilities for choosing the rotation speed. The more such opportunities, the more accurately you can adjust the level to specific working conditions. At the same time, advanced control functions inevitably affe...ct the price, but this impact is often insignificant compared to the total cost of the device itself.

Operating temperature

The temperature range at which the device is guaranteed to work for a sufficiently long time without failures, breakdowns and exceeding the measurement error specified in the characteristics. Note that we are talking primarily about the temperature of the device case, and it depends not only on the ambient temperature — for example, a tool left in the sun can overheat even in fairly cool weather.

In general, you should pay attention to this parameter when you are looking for a model for working outdoors, in unheated rooms and other places with conditions that are significantly different from indoor ones; in the first case, it makes sense to also make sure that there is dust and water protection (see "Protection class"). On the other hand, even relatively simple and "myopic" levels / rangefinders usually tolerate both heat and cold quite well.

Tripod thread

The standard size of the thread used to mount the level/rangefinder on a tripod (if available). This option can be useful if you already have a surveying tripod that you want to use with the tool.

The most popular options in modern devices are 1/4" and 5/8". It is worth noting that 1/4" is a standard size for photographic equipment - accordingly, levels with such a thread can be installed even on ordinary photographic tripods.

Diode emission

The wavelength of the radiation emitted by the LED of the level or rangefinder; this parameter determines primarily the colour of the laser beam. The most widespread in modern models are LEDs with a wavelength of about 635 nm — at a relatively low cost, they provide bright red radiation, giving a well-visible projection. There are also green lasers, usually at 532 nm — the marks from them are even better visible, but such LEDs are quite expensive and rarely used. And radiation with a wave longer than 780 nm belongs to the infrared spectrum. Such a laser is invisible to the naked eye and is poorly suited for leveling, but it can be used in rangefinders — of course, with a viewfinder (see "Type" for more details).

Laser class

Class of the laser emitter installed in the device.

The laser power primarily depends on this indicator; and this, in turn, affects the effective range of the device and precautions when working with it. The main options relevant for modern levels and rangefinders are class 2, class 2M and class 3R, here is their more detailed description:

— 2. Such a laser beam is considered safe in case of accidental contact with the eyes, since due to the blinking reflex, the exposure time in such cases usually does not exceed a quarter of a second. This applies to both the naked eye and the use of magnifying instruments such as a monocular or even a telescope. But constant exposure to the eye already poses a danger to vision. The power of such emitters should be below 1 mW. In fact, 2 is the lowest (in terms of power) class used in levels and rangefinders; weaker lasers of classes 1 and 1M simply do not provide the required efficiency. Such emitters are used in the vast majority of low and medium power devices.

- 2M. Such lasers produce a wider beam than class 2 emitters. However, such a beam is also considered safe if it accidentally enters the eye - but only if we are talking about the naked eye. When viewed through a monocular or other magnifying optical instrument, class 2M lasers are dangerous even with low-term (fractions of a second) exposure to the eye. I...n general, this option is quite rare: class 2M is not strictly official and does not have such clear criteria as the original class 2.

- 3R. Also known as IIIa. In fact, it is an analogue of class 2, suggesting a higher emitter power, namely from 1 to 4.99 mW. At the same time, class 3R lasers are generally considered safe in case of accidental contact with the eye when a person reflexively blinks or turns away and the exposure time does not exceed ¼ second. However, such emitters carry a greater risk of serious harm to health than Class 2 devices, so greater caution should still be exercised when using them.
Intertool MT-3052 often compared
TOPEX 29C908 often compared