Dark mode
United Kingdom
Catalog   /   Small Appliances   /   Health & Rehabilitation   /   Heart Rate Monitors & Pedometers

Comparison Beurer PM 26 vs Beurer PM 18

Add to comparison
Beurer PM 26
Beurer PM 18
Beurer PM 26Beurer PM 18
from $50.60 up to $79.96
Outdated Product
from £58.67 
Outdated Product
TOP sellers
Device typeheart rate monitorheart rate monitor / pedometer
Mount
on the wrist
on the wrist
Heart rate sensorexternalfinger sensor
Specs
Display shaperoundrectangular
Displaymonochromemonochrome
Display backlight
Possible measurements
pulse rate
 
 
 
calories burned
amount of fat burned
average/max. heart rate
 
pulse rate
number of steps
distance traveled
movement speed
calories burned
amount of fat burned
 
activity time
Features
watches
alarm clock
calendar
stopwatch
timer
watches
alarm clock
calendar
stopwatch
timer
More features
Individual settings
gender
age
weight
growth
 
individual training area
gender
age
weight
growth
stride length
individual training area
General
Source of powerbatterybattery
Water protection++
Waterproof50 m50 m
Added to E-Catalogdecember 2014december 2014

Device type

Pedometer. This category comprises devices primarily designed to count the number of steps taken by the user. Additional measurements in the design are directly related to step counting and may include movement speed, distance traveled, energy consumption, etc. Steps are typically counted based on accelerometer data, responding to the characteristic shaking during walking. Some pedometers use GPS modules instead of accelerometers, measuring distance traveled rather than individual steps. Another specific variety is designed for swimmers, measuring strokes instead of steps. Despite this difference, they share key features with traditional pedometers and are included in the same category.

Heart rate monitor. Devices designed to track the user's heart rate and the corresponding calculations based on this data. They are not able to work with step counting — unlike pedometers and combination metres, see below. There are both devices with a built-in sensor, and with a remote one.

Heart rate monitor/pedometer. Combined models integrate the functionalities of both heart rate monitors and pedometers, measuring both the number of steps and heart rate, along with related parameters. These devices offer versatility, but their development involves technical challenges that can impact measurement quality and overall cost. As a result, there are relatively few...models of this type available on the market.

Pulse oximeter. These devices can measure both heart rate and blood oxygen saturation and typically resemble a characteristic "clothespin" attached to the finger. Using non-invasive methods, they determine blood oxygen levels without causing skin damage. While suitable for sports applications, they also find use in medical settings, serving as a means to monitor a patient's condition in the absence of more advanced medical equipment. However, due to the inconvenience of the finger "clothespin" during vigorous activity, these devices are more aligned with medical instruments in their intended use.

Heart rate sensor. These models are external heart rate sensors meant for connection to other devices such as heart rate monitors, exercise equipment, or smartphones. They are not designed for stand-alone use. While these cardiac sensors have limited capabilities, this is not a drawback but a specific feature inherent in their application format. The expectation is that additional measurements will be conducted by an external device, and the sensor's role is to provide the necessary data for this purpose.

Heart rate sensor

External. An external chest sensor is directly attached to the chest using a special belt, typically communicating wirelessly with the main unit. This communication can be through a universal interface like Wi-Fi or Bluetooth, a specialized one such as ANT +, or even a distinct natural frequency. This design ensures accurate measurements, allows flexibility in fastening the main unit of the heart rate monitor, and minimizes inconvenience. The sensors don't restrict movements much and have lenient requirements for dimensions and weight, contributing to cost-effectiveness. As a result, chest sensors are widely popular.

Built-in. Built-in sensors refer to sensors installed directly in the main unit of the heart rate monitor, consistently in contact with the skin. This design is convenient as everything needed is housed in a single unit, reducing the risk of losing the sensor. They offer continuous heart rate monitoring, but the options for fastening are limited (see "Purpose"), typically restricted to the wrist due to the need for constant skin contact. Strict requirements for dimensions, weight, and the design's complexity impact the cost, and measurement accuracy is generally lower. Due to these factors, built-in sensors are not widely adopted.

— Finger sensor. A finger sensor reads heart rate data from the fingertip, typically the index finger. In...some wrist-mounted models, these sensors are integrated into the case, requiring touch for pulse measurement. Unlike built-in sensors, finger sensors don't provide continuous monitoring but offer higher accuracy. Another option is a clip-like "clothespin" attached to the fingertip, akin to sensors in medical equipment. While these allow constant pulse monitoring, they are less convenient for vigorous activity and are uncommon.

— Ear clip. Another type of "clothespin," in this case designed for attachment to the earlobe. These clips are smaller and less restrictive than finger clips, making them more suitable for active activities. However, achieving light and compact sensors with wireless connections is challenging, and additional wires can make the structure unwieldy. As a result, ear clips are uncommon, primarily found in neck-mounted models (see "Purpose").

Display shape

The shape of the display provided in the design of the device. In this case, there are two main types of displays — round and rectangular. However, it is worth noting that such a division is very arbitrary, and the groups themselves are very extensive: for example, round displays are oval and egg-shaped, some of them resemble rectangles with extremely rounded corners; a classic rectangular display can be placed in a round case, etc. In addition, its shape practically does not affect the functionality of the display. Therefore, when choosing, you should focus not so much on the form as on the type of display (see below), the features of displaying various data on it and the general compliance with your aesthetic preferences.

Possible measurements

Measurements and calculations that can be carried out with the device.

Heart rate. Heart rate measurement in real-time is a crucial feature for devices with a heart rate monitor function and is primarily the main function for heart sensors and pulse oximeters. In fitness, heart rate is a key parameter, aligning with various training goals such as fat burning, maintaining shape, or cardiovascular strengthening. Many models can also detect critical situations like heart rhythm disturbances or excessive heart rate, providing user warnings. However, it's important to note that not all heart rate monitors or combined devices offer continuous monitoring; some models require touching the sensor for measurements. Therefore, for constant pulse data, ensure the selected device supports continuous monitoring.

— The level of oxygen in the blood. The pulse oximeter function measures blood oxygen saturation levels using a specialized sensor in a non-invasive manner, without puncturing or damaging the skin. It's important to acknowledge that the oxygen level sensor is not a certified medical device. However, it effectively responds to critical decreases in saturation, such as those experienced by climbers at high altitudes or individuals with specific respiratory conditions.

Perfusion Index (PI). A parameter found exclusi...vely in pulse oximeters (see “Type”). Perfusion Index (PI) is a measure of blood flow in the finger being measured. The PI indicator is measured as a percentage and can vary from 0.3 to 20%. A value in the range of 4 – 7% is considered normal. If you deviate from this range, the saturation measurement results may be distorted.

Number of steps. Step count measures the number of individual steps taken by the user, aiding in achieving recommended activity levels for a healthy lifestyle, fitness, or physical therapy. The function calculates steps taken in various ways, such as recording results for multiple sessions or days, displaying total and average numbers, remembering target values, and signaling their achievement. It's important to note that not all devices with a pedometer function (refer to "Type") support step count measurements. Some devices, designed for professional sports where movement speed is crucial, may prioritize other metrics over step count.

Distance travelled. The function measures the total distance covered by the user. Basic models calculate distance in real-time, while more advanced ones can summarize results and work with target values. There are two main measurement methods: classic pedometers determine distance by multiplying the number of steps by the set step length (refer to "Individual settings"), while models with GPS use satellite navigation data (see "Features"). The first method has a larger error, but it's often not critical. The second method is more accurate but is costlier and may not work well in areas with weak satellite signals, such as dense urban areas or indoors.

Movement speed. Measurement of the current movement speed. Like the distance traveled, this indicator can be calculated in two ways — by the number of steps or by data from the GPS module; see above for details on both methods. The simplest measurement option provides measuring the speed only at the current time, however, additional features may be provided — for example, building a schedule for a workout.

Energy expenditure (calories). The function measures the amount of energy expended during a workout, commonly referred to as "burned calories". Monitoring energy consumption is crucial in weight management training programs as it helps track metabolism. However, it's essential to note that modern heart rate monitors and pedometers do not directly determine actual energy consumption. Instead, they estimate the number of calories based on factors such as heart rate, movement speed, number of steps, user's personal characteristics (refer to "Individual settings"), and other indirect parameters. Despite being approximate, these calculations are generally accurate enough for practical application.

The amount of burning fat. The function calculates the amount of burned fat during a workout, typically measured in weight units such as grams. Similar to energy consumption, the device doesn't directly measure the actual fat burned but estimates it from various auxiliary data. The accuracy of these measurements is relatively low, and this parameter is not a primary focus in fitness. However, tracking the amount of fat eliminated can serve as additional motivation for users.

— Average/maximum heart rate. Calculation of the average and maximum value of the heart rate for a certain period of time (usually for one training session). These calculations are based on general information about the heart rate; about its meaning, see above.

Activity time. The function measures the total duration of the user's physical activity, specifically recording only the time during which the device sensors detect the activity. Breaks in sessions are excluded from the recorded time. For instance, if you walked 1000 steps in 20 minutes with a 3-minute break, the recorded activity time would be 17 minutes. This feature distinguishes it from a regular stopwatch (refer to "Features") and enables accurate tracking of the duration and intensity of training loads.

Individual settings

Personalized settings enable users to tailor the device to their individual characteristics. Modern fitness devices often incorporate the following customization options:

— Gender. Ability to set the gender of the user. With the same age, height and weight, the male and female bodies still differ in metabolic characteristics, optimal heart rate values and some other significant parameters.

— Age. Ability to set the user's age. This indicator primarily affects the general condition of the body and its ability to endure high loads (although these points also depend on other factors, ranging from physique to physical fitness, previous diseases, etc.).

— Weight. The option to input user weight is used in calculating optimal heart rate, energy expenditure, and fat burned (refer to "Possible measurements"). When combined with height, it provides insights into physique specifics and the need for weight management.

— Height. Ability to set the user's height. This indicator is practically not used on its own — it is usually used in combination with weight (see above) when determining physique. In addition, some pedometers (see “Type”) can calculate stride length from height data (although this setting is more common, see below).

— Step length. Ability to manually set the user's average step length. The main scope of this data is the calculation of the distance traveled in pedometers (see "Possible measurements")....

— Individual training area. Users can manually define an individual training zone, specifying the desirable heart rate range during exercise, with a warning signal for exceeding it. While many fitness gadgets can automatically calculate an optimal range based on workout goals and individual settings, certain situations, such as recovery after illness or exceptional physical fitness, may require specific considerations. Some devices with a heart rate monitor function enable users to manually set a personalized training zone, factoring in all relevant parameters.
Beurer PM 26 often compared
Beurer PM 18 often compared