Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Heat Pumps

Comparison Lessar LUM-HE080FA2 8 kW vs Lessar LSM-H120HFA2 12 kW

Add to comparison
Lessar LUM-HE080FA2 8 kW
Lessar LSM-H120HFA2 12 kW
Lessar LUM-HE080FA2 8 kWLessar LSM-H120HFA2 12 kW
from $2,136.18
Outdated Product
from $2,563.42
Outdated Product
TOP sellers
Heat sourceair-waterair-water
Suitable forheating and DHWheating and DHW
In box
In box
 
outdoor unit
indoor unit (hydromodule)
 
Specs
Operating modeheating and coolingheating and cooling
Max. heat output8 kW12 kW
Max. cooling output6.3 kW9 kW
Power source230 V230 V
Electric heater3 kW
Minimum operating temperature-15 °C
Max. water temperature55 °C55 °C
Energy efficiency
COP4
More specs
RefrigerantR410AR410A
Noise level58 dB58 dB
Country of brand originCzechiaCzechia
Dimensions947x500x373 mm
Outdoor unit dimensions862x895x313 mm
Hydromodule weight63 kg
Outdoor unit weight66 kg
Added to E-Catalogoctober 2016october 2016

In box

Indoor unit (hydromodule). The part of a heat pump that is installed indoors. By definition, it is included in the delivery set of "ground-water" units (see "Heat source") — the indoor unit, in this case, is the actual heat pump, only the collector and connecting pipes are brought out. But air models may not have this module.

Outdoor unit. It is not used in ground-to-water models. However, it is an almost obligatory element of a complete set for air-to-water units. Usually, the outdoor unit also includes a collector for heat extraction. However, there are air heat pumps that can be installed indoors, with air supply and exhaust through ventilation ducts. — however, for such models, only the indoor unit is indicated in the package, although the device can usually be installed outdoors. And there are even monoblock models that combine an indoor and outdoor unit in one case.

Water heater. A device for heating water and supplying it to the DHW system; see "Water heater" for details. The presence of a built-in water heater, on the one hand, simplifies the installation of the pump and eliminates the need to purchase additional equipment; on the other hand, when buying such a pump, you have to rely on the choice of the manufacturer, while an external water heater can be purchased separately.

Max. heat output

The maximum heat output generated by a heat pump is the amount of heat it can transfer from the outdoors into the heating system and/or domestic hot water.

The heat output is the most important spec of a heat pump. It directly determines its efficiency and ability to provide the required amount of heat. Note that this spec is shown for optimal operating conditions. Such conditions are rare, so the actual output heat is usually noticeably lower than the maximum; this must be taken into account when choosing. There are special formulas for calculating the optimal value of the maximum heat output, depending on the specific condition.

Max. cooling output

Maximum cooling output delivered by the pump.

The pump operates in the cooling mode removing excess heat from the room to the environment — it plays the role of an air conditioner. The required cooling capacity depends on the area of the building, the specs of its thermal insulation and some other factors; methods of its calculation can be found in special sources. Also note here that conventional heating equipment (radiators, underfloor heating) is not suitable for cooling, for this it is necessary to use special equipment (for example, fan coil units).

Electric heater

The power of the heating element installed in the device (if such a function is available).

It isan electric heater in the form of a tube with an incandescent filament inside. Such a heater plays an auxiliary role; it is used when the heat output of the pump itself is not enough — for example, with a significant drop in temperature outside. The main advantage of heating elements is that their efficiency does not depend on outdoor conditions. And the main disadvantage is the high energy consumption. If the heat pump can transfer much more heat energy than it consumes electricity, then the heat output of the heating element is approximately equal to the consumed one. That is why the specs indicate the power of the heating element in general, without specifying what it is about: the indicated figure corresponds to both the heating power and energy consumption. These parameters are similar to those of the heat pump itself; see above for more details.

Minimum operating temperature

The lowest ambient temperature (air or ground, see Heat source) at which a heat pump can safely and reasonably efficiently perform its functions. Efficiency at minimum temperature, of course, is noticeably reduced, but the device can still be used as a heat source.

The data on the minimum operating T allows you to evaluate the suitability of the pump for the cold season.

COP

The COP (coefficient of performance) is a key characteristic that describes the overall efficiency of a heat pump. It represents the ratio between the thermal power and power consumption of the unit (see above) – in other words, how many kilowatts of thermal energy the pump produces per 1 kW of electricity consumed. In modern heat pumps, this figure can exceed 5.

However, note that the actual COP value may vary depending on the outside temperature and the supply temperature. The higher the difference between these temperatures, the more resources are needed to “pump” thermal energy and the lower the COP will be. Therefore, in the specifications it is customary to indicate the COP value for specific temperatures (and in many models – two values, for different options) – this allows you to evaluate the actual capabilities of the unit.
Lessar LUM-HE080FA2 often compared