Dark mode
United Kingdom
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison Hubsan X4 H507A Star Pro vs Hubsan X4 H502C Star

Add to comparison
Hubsan X4 H507A Star Pro
Hubsan X4 H502C Star
Hubsan X4 H507A Star ProHubsan X4 H502C Star
from £136.19 
Outdated Product
from £109.00 
Outdated Product
TOP sellers
Main
The quadcopter has the function of automatic takeoff and landing.
Flight specs
Maximum flight time9 min10 min
Camera
Camera typebuilt-inbuilt-in
HD filming (720p)1280x720 px1280x720 px
Live video streaming
Memory card slot
Flight modes and sensors
Flight modes
return "home"
Follow me (tracking)
flyby GPS points
 
return "home"
 
 
acrobatic mode
Sensors
GPS module
heights
gyroscope
GPS module
 
gyroscope
Control and transmitter
Controlremote control and smartphoneremote control only
Range100 m200 m
Control frequency2.4 GHz
Information display
Remote control power source4xAAA
Motor and chassis
Motor typecollectorcollector
Number of screws4 pcs4 pcs
Battery
Battery capacity0.55 Ah0.45 Ah
Voltage7.6 V7.4 V
Battery model2S
Batteries in the set1 pcs1 pcs
USB charging
General
Protected case
Body backlight
Materialplasticplastic
Dimensions350x350x200 mm225x225x60 mm
Weight162 g115 g
Color
Added to E-Catalogseptember 2017november 2016

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Live video streaming

Possibility of online video broadcasting from the quadcopter to an external device — smartphone, laptop, control panel with display, virtual reality glasses, etc.

This feature provides several benefits at once. Firstly, it greatly simplifies the control of the device, even if it is within sight; and if the copter is not visible from the ground (which happens often, especially when using heavy professional equipment), then it is very difficult to do without "eyes on board". Secondly, live broadcasting makes it possible to use a drone for real-time observations, as well as full-fledged aerial photo and video shooting; recording of footage can be carried out both on an external device that receives the broadcast, and on the aircraft’s own carrier (usually a memory card — see below).

The specific features of the live broadcast for each model should be clarified separately; however, nowadays, thanks to the development of technology, such an opportunity is available even in low-cost devices.

Memory card slot

The presence of a slot for memory cards in the design of the quadcopter.

Usually, this function is provided in models equipped with cameras (see “Camera type”), and the cards themselves are used primarily for recording captured photos and videos. However, in some models, other data can be stored on such media — GPS tracks, flight routes, flight programs, etc. Anyway, cards are convenient, first of all, by the ability to quickly transfer data between the device and other devices that have a card reader (in particular, laptops).

It is worth noting that different devices can be designed for different standards of memory cards, and the media themselves are usually not supplied in the kit. Therefore, before choosing a card, you should clarify according to official data which type will be optimal for your model.

Flight modes

Return home function. With this function, the quadcopter can automatically return to the starting point. The specific details of this feature may vary. So, some models return "home" at the user's command, others are able to do it on their own — for example, when the signal from the remote control is lost or when the battery charge is critically low; in many devices, both options are provided at once. Also note that this function is found even in models that do not have a GPS module (see "Sensors") — the copter can navigate in space in another way (by inertial sensors, by a signal from the remote control, etc.).

Follow me mode. A mode that allows the quadcopter to constantly follow the user at a short distance — like a "personal drone". The way to implement this mode and the equipment required for it can be different: some models track the direction to the transmitter and the signal strength from it, others constantly receive data from the GPS module of a smartphone or other gadget and follow these coordinates, etc. Anyway, such a mode can be useful not only for entertainment, but also for quite practical purposes — for example, for using a quadcopter as an “air chamber”, constantly located next to the operator and at the same time not occupying hands.

Dronie (distance). Initially, the term “dronie” refers to a selfie (photo or video) taken from a...drone. This mode is mainly intended for such tasks. And its essence lies in the fact that the copter smoothly moves away from a certain object along a given trajectory, keeping this object in the centre of the frame. The classic version of flying in Dronie mode is moving away first horizontally, then horizontally and up; however, in some models, the copter’s trajectory can be further configured. Frame management can also be carried out in different ways — from simple pointing at a certain point and ending with the selection of an object on the screen with further "smart" tracking of this object. Anyway, for all its simplicity, such a shooting technique allows you to create quite interesting videos: for example, in this way you can first capture a group of people in close-up in one video, then the beauty of the landscape around them.

Rocket (distance up). A flight mode in which the copter smoothly rises to a predetermined altitude along a strictly vertical trajectory. Similar to the Dronie described above, it is mainly used when shooting video: first, a certain scene is shot in close-up, and as it rises, the camera covers an increasingly wider area around this scene. Usually, in Rocket mode, you can pre-set the height at which the device will stop.

"Orbit mode" (flying in a circle). A mode that allows you to launch the copter in a circular orbit around the specified point. It is also used mainly for shooting video: in such cases, the camera remains constantly pointed at a given object, but the angle and background, due to the movement of the drone, are constantly changing. In the "orbit" settings, usually, you can set its radius, height and direction of movement, as well as the angle of the camera.

Helix (circle in a spiral). Another mode used as an artistic technique for filming videos. In this mode, the copter, keeping a given object in the centre of the frame, moves around it in a spiral, gradually moving away and increasing its height. This allows you to get the maximum variety of angles and angles of coverage.

Note that Dronie, Rocket, Helix, and Orbit modes originally appeared as part of the proprietary QuickShot toolkit in DJI's Mavic series drones. However, later similar functions were introduced by other manufacturers, so now these names are used as common nouns.

Flight plan(Waypoints). The ability to set a specific flight route for the quadcopter, by control points. This feature is very similar to the GPS waypoint flyby (see above), but it works differently, without the use of GPS navigation. One of the most popular options is building a route in the smartphone application through which the copter is controlled; when the programme is launched, the smartphone issues a sequence of commands corresponding to the route to the device. In general, the Waypoints mode is not as accurate as a GPS waypoint flyby and offers fewer options. Therefore, this function is mainly for entertainment purposes; if the copter has a camera, it can be useful for taking a selfie or a simple video.

Flight by GPS points. A mode that allows you to launch a quadcopter along a specific route — by setting individual route points to the car in advance (according to GPS coordinates) and the order in which they are passed. In addition, additional settings may be provided — for example, speed and altitude on individual sections of the route. This function is similar to the Waypoints mode (see below) in many ways, but it is found mainly in mid-range and high-end devices. At the same time, the use of GPS provides higher accuracy, which allows the drone to be used for professional purposes. For example, if you set a route for shooting from the air in this way, the operator will be able to fully concentrate on working with the camera, without being distracted by controlling the copter.

Acrobatic mode. A special mode for performing aerobatics. Note that the specific meaning of this mode may be different, depending on the level and purpose of the copter. So, in the simplest entertainment models, automatic programs are usually provided that allow you to perform certain aerobatic manoeuvres literally “at the touch of a button”. And in advanced devices in flight mode, the stabilization system is turned off, and the drone is very sensitive to operator commands; this requires high precision in control, but gives maximum control over the flight.

Sensors

Additional sensors provided in the design of the quadcopter.

— Heights. A sensor that determines the flight altitude of the machine. Such sensors can use the barometric or ultrasonic principle of operation. In the first case, the height is measured by the difference in atmospheric pressure between the current point and the starting point (that is, the sensor determines the height relative to the initial level); in the second, the sensor acts similarly to sonar, sending a signal to the ground and measuring the time it takes to return. Barometric sensors are not very accurate, but they work well at high altitudes — tens and hundreds of metres; ultrasonic — on the contrary, they allow you to accurately manoeuvre at low level flight, but lose effectiveness as you climb. However, in some advanced models, both options may be provided at once. Data from the height sensor can either be used by the quadcopter “independently” (for example, when hovering or automatically returning), or transmitted to the operator to the remote control or smartphone.

Optical. A sensor that allows the quadcopter to "see" the environment in certain directions. One of the simplest variants of such a sensor is a downward-facing camera that allows the device to “copy” the surface under which it flies. Due to this, the machine, for example, can navigate indoors, where the signal from GPS satellites does not reach. In...addition to such a chamber, "eyes" can also be provided from different sides of the machine. Note that optical sensors have certain limitations in their use — for example, they lose their effectiveness on dark, shiny or uniform (without noticeable details) surfaces, as well as at high speeds.

GPS module. A sensor that receives signals from navigation satellites (GPS, in some models also GLONASS) and determines the current geographical coordinates of the machine. Specific ways of using position data can be different: returning home, flying by waypoints (see below), recording a flight route, etc.

Gyroscope. A sensor that determines the direction, angle and speed of the machine's rotation along a specific axis. Modern technologies make it possible to create full-fledged three-axis gyroscopes of very compact dimensions, and it is with such modules that quadcopters are usually equipped. On the basis of gyroscopes, automatic stabilization systems usually work, returning the car to a horizontal position after a gust of wind, collision with an obstacle, etc. At the same time, such equipment affects the cost of the device, and in some cases (for example, during piloting), automatic stabilization is more of a hindrance than a useful feature. Therefore, some low-cost, as well as advanced aerobatic quadcopters, are not equipped with gyroscopes.

Control

The control method provided in the copter.

Modern drones are usually controlled by a remote control, a smartphone, or both. Here is a detailed description of each of these options:

— Remote control only. Management carried out exclusively from the complete remote control. The most common option, found in all varieties of drones — from the simplest entertainment models to high-end professional devices; and heavy commercial / industrial models (see "Type") are completely controlled exclusively in this way. Such popularity is explained by two points. Firstly, the functionality of the remote control can be almost anything — from a small device with a couple of levers and buttons to a multifunctional control unit with a screen for live broadcasts and displaying various specialized information. Thus, the equipment of the remote control can be optimally matched to the features of a particular copter. Secondly, you can install a powerful transmitter with a large range in the remote control (whereas the range of smartphones is very limited, and it also depends on the specific gadget model). Well, besides, the control panel is initially supplied with the drone (except that the batteries in some models need to be purchased separately).

— Smartphone only. Management carried out exclusively from a smartphone (or other similar gadget — for example, a tab...let) through a special application; communication is usually carried out via Wi-Fi. This option is good because almost any functionality can be provided in the control application; and the copter itself turns out to be convenient in transportation — in the sense that you do not need to carry a separate remote control with it. However, the range in such a control is very small — even under perfect conditions, it usually does not exceed 100 m, and in some models it does not even reach 50 m; and the actual communication range also strongly depends on the characteristics of the control gadget. In addition, the controls on the touch screen are not tactile, making blind control almost impossible. As a result, this option is very rare — in certain models of mini-drones and selfie-drones (see "In the direction"), for which the absence of a remote control and ease of carrying are important, and the described disadvantages are not critical.

— Remote control and smartphone. The ability to control the drone both from the remote control and from a smartphone. The features of both options are described in detail above; and their combination is found mainly in relatively simple devices, for which the shortcomings of control via a smartphone are not critical (although there are exceptions). At the same time, the main option for such copters is often control from an external gadget, and the remote control may not be included at all; This point does not hurt to clarify before buying. However, anyway, this control format gives the user the opportunity to choose the best option for a specific situation. For example, for recreational flights during a "sally" in nature, you can get by with a smartphone, and for aerobatic training, a remote control is better. So most modern quadcopters that can be controlled from a smartphone / tablet fall into this category.

Range

The range of the drone is the maximum distance from the control device at which a stable connection is maintained and the device remains controlled. For models that allow operation both from the remote control and from a smartphone (see "Control"), this item indicates the maximum value — usually achieved when using the remote control.

When choosing according to this indicator, note that the range is indicated for perfect conditions — within line of sight, without obstacles in the signal path and interference on the air. In reality, the control range may be somewhat lower; and when using a smartphone, it will also depend on the characteristics of a particular gadget. As for specific figures, they can vary from several tens of metres in low-cost models to 5 km or more in high-end equipment. At the same time, it should be said that the greater the range of communication, the higher its reliability in general, the better the control works with an abundance of interference and obstacles. Therefore, a powerful transmitter can be useful not only for long distances, but also for difficult conditions.

Control frequency

The frequency used to communicate between the aircraft and its control device (usually a remote control).

Some time ago, devices with analog control at a frequency of 27.145 MHz and 40 MHz could be found on sale. However, today these standards have practically fallen out of use and modern copter drones mainly use digital communications at a frequency of 2.4 GHz or 5.8 GHz(and some models support both of these ranges at once). This type of control has a number of advantages over analogue control. Firstly, it is less sensitive to interference: on an analog channel, a drone can mistake possible interference for a command and make an unexpected maneuver, while distortion of digital data is perceived precisely as distortion and does not affect the operation of the device. Secondly, the digital format provides high bandwidth, allowing you to even broadcast high-definition video directly from a drone. Thirdly, with this control, each “remote control-copter” pair is automatically allocated its own communication channel, and the system first checks whether it is being used by another pair of devices. Thanks to this, several devices can operate in close proximity without interfering with each other.

As for the features of specific frequency ranges, they are as follows:

- 2.4 GHz. The most popular standard in modern drones. This is due, on the one hand, to low cost (with all the advan...tages of digital control), and on the other hand, to expanded compatibility. The fact is that 2.4 GHz is the most common range of Wi-Fi modules in smartphones, tablets, etc.; so compatibility with this range allows you to easily supplement the drone with the ability to control it from an external gadget (however, this capability is not mandatory). One of the disadvantages of 2.4 GHz is also associated with the abundance of devices that use this frequency: in addition to Wi-Fi, these are Bluetooth modules, some other electronic devices, as well as most remote controls for radio-controlled equipment (not just copters). So this range is somewhat inferior to the 5.8-GHz range in terms of noise immunity; on the other hand, even with a busy broadcast, this moment is extremely rarely noticeable.

- 5.8 GHz. Further, after the 2.4 GHz described above, the development of digital standards. Allows for a longer communication range and is also more reliable, since there are significantly fewer extraneous signal sources at the 5.8 GHz frequency. In addition, the increase in frequency made it possible to increase bandwidth and effectively broadcast HD video from copters in the most advanced standards. However, some of the newest Wi-Fi standards also include support for this range, so drones in this category can also allow control from a smartphone (however, in such cases it is worth paying special attention to compatibility). The disadvantages of this option include the relatively high cost; however, thanks to the development and cheaper technology, support for 5.8 GHz can now be found even in relatively inexpensive copters.

- 2.4 GHz and 5.8 GHz. Support for both ranges described above - as a rule, with the ability to use any of them, at the user's choice. This provides additional convenience, reliability and versatility. For example, a model with two control methods (see “Control”) can use the 2.4 GHz band when working with a smartphone (which ensures a minimum of compatibility problems), and work with a remote control at 5.8 GHz (for maximum range and reliability). And drones controlled only from a remote control may even have a function such as automatically scanning ranges and selecting the least loaded one. At the same time, dual-band models are slightly more expensive than single-band ones, but the difference in price (especially with devices only at 5.8 GHz) is not particularly significant. So most modern copters capable of operating at a frequency of 5.8 GHz fall into this category.

When using specialized communication protocols, control signals between the copter and the remote control can be transmitted at special frequencies: 720 MHz, 915 (868) MHz.

Information display

The presence of an information display on the quadcopter control panel.

Note that this feature should not be confused with the FPV broadcast screen (see below). The information display is usually a simple segment display capable of displaying numbers, individual letters, and, on some models, a limited set of special icons. However, even such equipment significantly expands the capabilities of the remote control and allows the operator to receive a lot of additional information: battery charge, signal level, range, flight altitude, etc. At the same time, the auxiliary screen is inexpensive and can be used even in low-cost models. And in advanced drones, it may well complement the broadcast display: separating data into different screens contributes to ease of control.
Hubsan X4 H507A Star Pro often compared
Hubsan X4 H502C Star often compared