Dark mode
United Kingdom
Catalog   /   Camping & Fishing   /   RC Models   /   Drones

Comparison Visuo XS809HW vs Syma X15W

Add to comparison
Visuo XS809HW
Syma X15W
Visuo XS809HWSyma X15W
Outdated ProductOutdated Product
TOP sellers
Main
The model has a folding design, when folded it has dimensions: 190x140x60 mm. Automatic takeoff and landing. The model has three speed modes. The ability to control a smartphone using G-sensor
Recording video on a memory card is in HD quality. You can set the flight route of the quadcopter by drawing it in the smartphone application
Flight specs
Maximum flight time10 min8 min
Camera
Camera typebuilt-inbuilt-in
Number of megapixels2 MP1 MP
HD filming (720p)1280x720 px1280x720 px
Viewing angles120°
Live video streaming
Memory card slot
Flight modes and sensors
Flight modes
return "home"
 
acrobatic mode
return "home"
flight plan without GPS (Waypoints)
acrobatic mode
Sensors
heights
gyroscope
heights
gyroscope
Control and transmitter
Controlremote control and smartphoneremote control and smartphone
Gesture control
Range80 m70 m
Control frequency2.4 GHz2.4 GHz
Video transmission frequency2.4 GHz (Wi-Fi)
Smartphone mount
Remote control power source3xAA4xAA
Motor and chassis
Number of screws4 pcs4 pcs
Foldable design
Battery
Battery capacity0.9 Ah0.45 Ah
Voltage3.7 V3.7 V
Battery model1S1S
Batteries in the set1 pcs1 pcs
USB charging
General
Protected case
Body backlight
Materialplasticplastic
Dimensions325х325х60 mm220х220х50 mm
Dimensions (folded)190х140х60 mm
Weight158 g64 g
Color
Added to E-Catalognovember 2017october 2017
Price comparison

Maximum flight time

Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.

Note that for modern copters, a flight time of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.

Number of megapixels

Resolution of the matrix in the standard camera of the quadrocopter.

Theoretically, the higher the resolution, the sharper, more detailed image the camera can produce. However, in practice, the quality of the "picture" is highly dependent on a number of other technical features - the size of the matrix, image processing algorithms, optical properties, etc. Moreover, when increasing the resolution without increasing the size of the matrix, the image quality may drop, because. significantly increases the likelihood of noise and extraneous artifacts. And for shooting video, a large number of megapixels is not required at all: for example, to shoot Full HD (1920x1080) video, which is considered a very solid format for quadrocopters, a sensor of only 2.07 megapixels is enough.

Note that high resolution is often a sign of an advanced camera with high image quality. However, this quality is not determined by the number of megapixels, but by the characteristics of the camera and the special technologies used in it. Therefore, when choosing a quadcopter with a camera, you should look not so much at the resolution as at the class and price category of the model as a whole.

Viewing angles

The viewing angle provided by the standard quadcopter camera; for optics with adjustable zoom, usually, the maximum value is taken into account.

The viewing angle is the angle between the lines connecting the centre of the lens to the two opposite extreme points of the visible image. Usually measured along the diagonal of the frame, but there may be exceptions. As for the specific values of this parameter, in modern copters they can range from 55 – 60 ° to 180 ° and even more. At the same time, a wider angle (ceteris paribus) allows you to simultaneously fit more space into the frame; and a narrower one covers a smaller space, however, the objects that are in the frame look larger, it is easier to see individual small details on them. So when choosing by this parameter, you should consider what is more important for you: wide coverage or an additional zoom effect.

Flight modes

Return home function. With this function, the quadcopter can automatically return to the starting point. The specific details of this feature may vary. So, some models return "home" at the user's command, others are able to do it on their own — for example, when the signal from the remote control is lost or when the battery charge is critically low; in many devices, both options are provided at once. Also note that this function is found even in models that do not have a GPS module (see "Sensors") — the copter can navigate in space in another way (by inertial sensors, by a signal from the remote control, etc.).

Follow me mode. A mode that allows the quadcopter to constantly follow the user at a short distance — like a "personal drone". The way to implement this mode and the equipment required for it can be different: some models track the direction to the transmitter and the signal strength from it, others constantly receive data from the GPS module of a smartphone or other gadget and follow these coordinates, etc. Anyway, such a mode can be useful not only for entertainment, but also for quite practical purposes — for example, for using a quadcopter as an “air chamber”, constantly located next to the operator and at the same time not occupying hands.

Dronie (distance). Initially, the term “dronie” refers to a selfie (photo or video) taken from a...drone. This mode is mainly intended for such tasks. And its essence lies in the fact that the copter smoothly moves away from a certain object along a given trajectory, keeping this object in the centre of the frame. The classic version of flying in Dronie mode is moving away first horizontally, then horizontally and up; however, in some models, the copter’s trajectory can be further configured. Frame management can also be carried out in different ways — from simple pointing at a certain point and ending with the selection of an object on the screen with further "smart" tracking of this object. Anyway, for all its simplicity, such a shooting technique allows you to create quite interesting videos: for example, in this way you can first capture a group of people in close-up in one video, then the beauty of the landscape around them.

Rocket (distance up). A flight mode in which the copter smoothly rises to a predetermined altitude along a strictly vertical trajectory. Similar to the Dronie described above, it is mainly used when shooting video: first, a certain scene is shot in close-up, and as it rises, the camera covers an increasingly wider area around this scene. Usually, in Rocket mode, you can pre-set the height at which the device will stop.

"Orbit mode" (flying in a circle). A mode that allows you to launch the copter in a circular orbit around the specified point. It is also used mainly for shooting video: in such cases, the camera remains constantly pointed at a given object, but the angle and background, due to the movement of the drone, are constantly changing. In the "orbit" settings, usually, you can set its radius, height and direction of movement, as well as the angle of the camera.

Helix (circle in a spiral). Another mode used as an artistic technique for filming videos. In this mode, the copter, keeping a given object in the centre of the frame, moves around it in a spiral, gradually moving away and increasing its height. This allows you to get the maximum variety of angles and angles of coverage.

Note that Dronie, Rocket, Helix, and Orbit modes originally appeared as part of the proprietary QuickShot toolkit in DJI's Mavic series drones. However, later similar functions were introduced by other manufacturers, so now these names are used as common nouns.

Flight plan(Waypoints). The ability to set a specific flight route for the quadcopter, by control points. This feature is very similar to the GPS waypoint flyby (see above), but it works differently, without the use of GPS navigation. One of the most popular options is building a route in the smartphone application through which the copter is controlled; when the programme is launched, the smartphone issues a sequence of commands corresponding to the route to the device. In general, the Waypoints mode is not as accurate as a GPS waypoint flyby and offers fewer options. Therefore, this function is mainly for entertainment purposes; if the copter has a camera, it can be useful for taking a selfie or a simple video.

Flight by GPS points. A mode that allows you to launch a quadcopter along a specific route — by setting individual route points to the car in advance (according to GPS coordinates) and the order in which they are passed. In addition, additional settings may be provided — for example, speed and altitude on individual sections of the route. This function is similar to the Waypoints mode (see below) in many ways, but it is found mainly in mid-range and high-end devices. At the same time, the use of GPS provides higher accuracy, which allows the drone to be used for professional purposes. For example, if you set a route for shooting from the air in this way, the operator will be able to fully concentrate on working with the camera, without being distracted by controlling the copter.

Acrobatic mode. A special mode for performing aerobatics. Note that the specific meaning of this mode may be different, depending on the level and purpose of the copter. So, in the simplest entertainment models, automatic programs are usually provided that allow you to perform certain aerobatic manoeuvres literally “at the touch of a button”. And in advanced devices in flight mode, the stabilization system is turned off, and the drone is very sensitive to operator commands; this requires high precision in control, but gives maximum control over the flight.

Gesture control

The ability to control the copter with gestures.

The implementation of this function can be different. The simplest and most inexpensive option is smartphone control, when commands are given by turning and tilting the gadget. There are models where the accelerometer and gyroscope are built directly into the remote control, and you can control it with hand gestures with the remote control. Another, more expensive and original way is to recognize the position of the user's hands using the built-in camera. Such devices usually have a set of commands tied to rather specific movements. For example, by folding your fingers into a “frame”, you can turn on the burst photography mode, with a wave of your hand you can call to yourself, and the device will perceive the outstretched palm as a landing pad.

In general , gesture control provides at least additional entertainment, and in some cases can be useful from a practical point of view.

Range

The range of the drone is the maximum distance from the control device at which a stable connection is maintained and the device remains controlled. For models that allow operation both from the remote control and from a smartphone (see "Control"), this item indicates the maximum value — usually achieved when using the remote control.

When choosing according to this indicator, note that the range is indicated for perfect conditions — within line of sight, without obstacles in the signal path and interference on the air. In reality, the control range may be somewhat lower; and when using a smartphone, it will also depend on the characteristics of a particular gadget. As for specific figures, they can vary from several tens of metres in low-cost models to 5 km or more in high-end equipment. At the same time, it should be said that the greater the range of communication, the higher its reliability in general, the better the control works with an abundance of interference and obstacles. Therefore, a powerful transmitter can be useful not only for long distances, but also for difficult conditions.

Video transmission frequency

The frequency of the radio channel used to transmit the video stream from the camera on board the drone to the receiving device: smartphone or tablet, control panel or pilot’s video glasses. The most common frequencies are 2.4 GHz and 5.8 GHz; video data transmission at a frequency of 1.2 GHz is less common. This parameter directly affects the quality and stability of the video signal, depending on environmental conditions, as well as accompanying interference from other devices. Thus, for receiving video from FPV drones, the most preferable frequency is 5.8 GHz, which is due to a wide selection of channels and high data transfer rates.

Remote control power source

The number and type of batteries used in the quadcopter control panel.

— AA. Replaceable batteries, colloquially known as "AA batteries". They are available not only in the form of disposable batteries, but also in the form of rechargeable batteries, are produced under various brands that differ in price and quality (which provides freedom of choice), and finding such elements on the market is usually not a problem. The power and capacity of AA elements are relatively small, but in most cases they are quite enough for normal operation of the transmitter for quite a long time. Usually, modern consoles require several of these batteries; in the most high consumption this number can reach 8.

— AAA. Also known as "pinky". In fact, a smaller version of popular AA elements (see above); has the same key features, but differs in more compact dimensions and, as a result, somewhat reduced power. This option is typical for low-cost class models, with a small range of the remote control.

— 3s. This marking does not describe the size of the battery, but its operating voltage and technology. It denotes a lithium-ion or lithium-polymer battery (see "Battery type"), assembled from three cells with a standard voltage of 3.7 V each, and thereby delivering an operating voltage of 11.1 V. The advantages of such a power supply are high power and capacity, which allows you to use the remote control for a long time without recharging. At the same time, batteries of thi...s type can vary significantly in size and weight, and not every model marked 3s will be compatible with the remote control. In addition, finding a spare battery is more difficult than a set of cells of a standard size.

— Proprietary battery. Powered by an original battery that is not related to any of the options described above. Such batteries can be much more powerful than replacement cells, making them well suited even for remotes with high power consumption. Their main advantage is the difficulty with quick replacement: the design of the remote control is at best poorly suited for this, and at worst the battery is generally non-removable. Also, finding the right replacement battery can be a major hassle.

Foldable design

The ability to fold the device, making it more compact. This feature can be very useful for ease of storage and transportation — especially considering that quadcopters and multicopters (even relatively light ones) are rather bulky when unfolded due to protruding propeller shafts. Actually, it is the rods that are most often made folding : they are mounted on swivel mounts and in the “transport” position are pressed against the body. In addition to this, it may be possible to remove the screws, providing an even greater compactness.

It should be noted that additional movable connections somewhat reduce the reliability of the entire apparatus. Therefore, in heavy professional equipment, a folding design is extremely rare — ease of storage / transportation for such copters is not as important as strength and “endurance”. However, there are exceptions.
Visuo XS809HW often compared
Syma X15W often compared