United Kingdom
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Hi-Fi Receivers

Comparison Yamaha R-N402 vs Yamaha R-N602

Add to comparison
Yamaha R-N402
Yamaha R-N602
Yamaha R-N402Yamaha R-N602
Compare prices 2Compare prices 1
TOP sellers
Typereceiverreceiver
Tech specs
Frequency range
20 – 20000 Hz /± 0.5 дБ/
20 – 20000 Hz /± 0.5 дБ/
Power per channel (8Ω)100 W80 W
Power per channel (4Ω)105 W
Permissible speaker impedance (Ω)8 Ohm4 Ohm
Signal to noise ratio (RCA)100 dB100 dB
Signal to noise ratio (Phono)87 dB
Audio DAC sample rate192 kHz192 kHz
Features
Audio formats supportMP3, WMA, AAC, WAV, FLAC, AIFF, ALAC, DSDMP3, WMA, AAC, WAV, FLAC, AIFF, ALAC, DSD
Streaming services
Spotify
TIDAL
Qobuz
Spotify
TIDAL
Qobuz
Adjustments
bass control
treble adjustment
balance adjustment
 
bass control
treble adjustment
balance adjustment
loudness
Multimedia
AirPlay
Wi-Fi
LAN
Bluetooth
DLNA
USB A
internet radio
AirPlay
Wi-Fi
LAN
Bluetooth
DLNA
USB A
internet radio
More features
Lossless
Uncompressed
Multi Zone
 
smartphone control
iPod/iPhone connect
Lossless
Uncompressed
Multi Zone
By-pass/Direct
smartphone control
iPod/iPhone connect
Connectors
Inputs
 
coaxial S/P-DIF
optical
Phono
coaxial S/P-DIF /2/
optical /2/
RCA4 pairs4 pairs
Outputs
Pre-Amp
 
 
Pre-Amp /2/
to subwoofer
control output (IR)
On headphones6.35 mm (Jack)6.35 mm (Jack)
General
Sleep timer
Remote control
Power consumption200 W
380 W /maximum/
Dimensions (WxDxH)435х340х200 mm435x392x151 mm
Weight7.3 kg9.8 kg
Color
Added to E-Catalognovember 2016february 2016

Power per channel (8Ω)

The nominal sound power output by the audio receiver per channel when operating with a load having a dynamic resistance (impedance) of 8 ohms. In our catalog, this parameter is indicated for the mode when both channels of the receiver work under load; when working on one channel, the rated power may be slightly higher, but this mode cannot be called standard.

Rated power can be simply described as the highest average output signal power at which the amplifier is able to operate stably for a long time (at least an hour) without negative consequences. These are average figures, because in fact, an audio signal is, by definition, unstable, and individual jumps in its level can significantly exceed the average value. However, the key parameter is still the nominal (average) power — it is on it that the overall sound volume directly depends.

This indicator also determines which speakers can be connected to the device: their rated power should not be lower than that of the receiver.

According to the laws of electrodynamics, with different dynamic load resistance, the output power of the amplifier will also be different. In modern speakers, values of 8, 6, 4 and 2 ohms are standard; the latter option, however, is rare, therefore, in audio receivers, the power for it, usually, is not indicated at all. As for the specific values for 8 ohms, the indicator up to 50 W is considered relatively low, 50 – 100 W is average, and with more than 100 W we can talk about high power.

Power per channel (4Ω)

The nominal sound power output by the audio receiver per channel when a load with a dynamic resistance (impedance) of 4 ohms is connected to it. It is customary to specify this parameter when the receiver is operating in two-channel mode (stereo); when using only one channel, the power may be slightly higher, but this mode cannot be called standard.

Rated power is the highest average (rms) output signal power at which the receiver is able to work for a long time without failures or malfunctions. The average power is taken because the audio signal is, by definition, unstable, and individual jumps in its level can significantly exceed the average value. However, the key parameter is still the rated (average) power. It determines two points — the overall volume of the sound and compatibility with one or another passive acoustics. The higher the power of the receiver, the louder the sound it can provide; at the same time, this power should not exceed the rated power of the speakers — otherwise, overloads and even damage to the equipment are possible.

According to the laws of electrodynamics, with a different load impedance, the output power of the amplifier will also be different. In modern speakers, values of 8, 6, 4 and 2 ohms are standard; the latter option, however, is rare, therefore, in audio receivers, the power for it, usually, is not indicated at all. As for specific power indicators at a 4-ohm load, values up to 100 W...are considered relatively small for modern receivers, more than 100 W — respectively, high.

Permissible speaker impedance (Ω)

The lowest speaker impedance that the audio receiver can handle normally.

The nominal impedance of the speakers, also referred to as the term "impedance", is one of the key parameters in the selection of audio system components: for normal operation, it is necessary that the speaker impedance match the characteristics of the amplifier. If the speaker impedance is greater, the sound volume will decrease significantly, if it is less, distortion will appear in it, and in the worst case, even overloads and breakdowns are possible. Therefore, in the characteristics of receivers, it is usually the minimum resistance that is indicated — after all, connecting a load of too low impedance is fraught with more serious consequences than too high.

Signal to noise ratio (Phono)

The signal-to-noise ratio when the audio receiver is connected to the Phono input. This input is for connecting turntables; see "Inputs" for more details. The value of this parameter is described in detail in the "Signal-to-noise ratio (RCA)" section.

Adjustments

Bass adjustment. The presence in the audio receiver of a separate bass level control, in other words, bass volume. The ratio of low and high frequencies largely determines the overall picture of the sound; the optimal options for this ratio for different cases will be different, and they depend on a number of factors — from the type of audio being played to the personal tastes of the listener. Anyway, the bass control provides an additional opportunity to fine-tune the sound of the entire system. It is often combined with a treble control (see below); in fact, this combination is the simplest version of the equalizer.

Treble adjustment. The presence in the receiver of a separate volume control for high frequencies. The meaning of this function is completely similar to the bass control described above, only it works with a different frequency band.

Balance adjustment. The presence in the audio receiver of the balance between the channels. This setting is used in stereo sound: by changing the position of the knob, you can increase the volume for one channel and decrease it for another. Due to this, the conditional centre of the perceived sound shifts towards the speaker that sounds louder. This feature can be very useful for correcting the sound stage — for example, if the speakers have different sensitivity, badly placed, or the signal itself is n...ot properly balanced. At the same time, the balance controller introduces additional elements into the design, which increases the likelihood of interference. And therefore, in top-class models, it may not be provided at all.

— Loudness. The presence of a loudness system in the audio receiver. This function is used to further adjust the tone of the sound when the sound volume is low. Its necessity is connected with the fact that the human ear perceives a quiet sound differently than a loud one; because of this, even high-quality sound at low volume will seem “blurry”, not clear enough. Loudness corrects this by boosting certain frequencies. Usually this mode is enabled by the user at will.

More features

— Lossless formats. The receiver's support for audio formats that use lossless compression. Unlike lossy compression (in the same MP3), with this compression, the sound is not cut, all its details are preserved as much as possible. Nowadays, there are several lossless formats, including FLAC and APE; the specific set of standards that the player is compatible with should be clarified separately. However, anyway, this function will be useful to those who appreciate the most complete and reliable sound.

— Formats without compression (uncompressed). Receiver support for non-compressed audio formats. Most of these standards are professional, they provide very high quality and reliability of sound, but they also take up a lot of space. Examples of uncompressed formats include DSD and DXD.

— RS-232. Also known as a COM port. Service connector to control the audio receiver, used to connect the device to a computer or specialized equipment. Such control can provide more options than using the original control panel or remote control.

— I2S support. The presence in the receiver of an input and/or output for a digital audio signal in the I2S format. This format is mainly intended for signal transmission within audio devices, but sometimes it is also used for communication between devices; the latter is implied in this case. The I2S interface does not have a standard connector; it can use ports of various types — in particular, BNC, RJ-45 (LAN) and ev...en HDMI. Anyway, the purpose of this connector is similar to the coaxial S / P-DIF (see "Inputs", "Outputs"); while the I2S standard, on the one hand, provides higher quality and noise immunity, on the other hand, it is less common and significantly affects the cost of devices.

— Multizone. Possibility of simultaneous transmission of signals from different sources to acoustic systems located in different places (zones). For example, in a large house, you can simultaneously broadcast music from the player into one room, and a radio programme into another. Another use case for Multi-Zone is entertainment centers with several rooms of different types (for example, a table tennis room, a roller skating rink and a cafe).

— Direct connection (By-pass/Direct). The ability to feed the audio signal coming to the input of the audio receiver directly to the amplification stages, bypassing all additional controls (timbre, balance, etc.). Direct connection not only minimizes distortion in the processed signal, but also ensures that the sound is as close to the original as possible, which allows demanding listeners to appreciate the skill of sound engineers. For such a connection, either a separate set of Main connectors (see "Inputs") or a conventional line interface switched to By-Pass/Direct mode by a special regulator can be used.

— Smartphone control. The ability to control the receiver from a smartphone, tablet or other gadget with a special application. In this case, the connection is usually carried out via Wi-Fi or Bluetooth, and the specific capabilities and features of such control may be different, depending on the model. However, the app is often more convenient and visual than using a control panel or even a traditional remote control; and some functions of the receiver can only be accessed via a smartphone.

Voice assistant. The ability to control the receiver using one or another voice assistant. It is worth noting that own voice assistants in this technique are not provided, and we are talking about compatibility with external devices that have this function (for example, with a smartphone or tablet). The most popular voice assistants nowadays are Google Assistant, Apple Siri and Amazon Alexa.

— Connecting an iPod/iPhone. Extended capabilities for working with portable devices from Apple — primarily the iPhone and iPod touch, often also the iPad. The specific set of such features may be different, it should be specified separately in each case. So, in some models, an “apple” gadget can be connected using a dock or a special cable and used as a signal source, controlling playback from the remote control or receiver panel and at the same time recharging the gadget. In other devices, the connection is made via Wi-Fi or Bluetooth, while the iPhone / iPod can work not only as a signal source, but also as a remote control (see "Control from a smartphone"). Other additional features may be provided, such as synchronizing the multimedia libraries of the receiver and the Apple device.

Inputs

mini-Jack (3.5 mm). A standard connector widely used in modern audio equipment and other electronics, mostly portable. Technically, the mini-Jack input can be used for different types of signal, but in fact in audio receivers it most often plays the role of a line interface and is mainly used to connect the mentioned portable equipment — for example, audio players.

Amplifier input (Main). An input designed to connect an external source directly to the power amplifier (in fact, in By-pass / Direct mode, see "Communications"). In different models, the Main inputs may differ in the type of interface, most often either RCA (“tulip”) or XLR is used. The first option is extremely widespread in modern high-end audio equipment due to its low cost, simplicity and good connection quality, however, in terms of signal purity and resistance to interference (especially when working with long wires), it still loses to XLR. It is also worth noting that “tulip” connectors can also be used for the main line input — see “RCA” for details; do not confuse this input with Main (especially since they may differ in technical parameters — for example, input impedance).

Phono. Special input for connecting turntables; often has a suffix indicating the type of cartridge that is compatible, such as "Phono MM" or "Phono MM/MC". A feature of "...vinyl" is that the sound coming from the pickup must be passed through a phono stage. Actually, the presence of the Phono input just means that the receiver is equipped with a built-in phono stage and you can connect a “turntable” directly to it, without additional equipment.

— XLR (balanced). Audio line input using balanced connection via XLR — characteristic round 3-pin plug; one input consists of a pair of these connectors, for the left and right stereo channels. A feature of a balanced connection is that the XLR cable itself dampens external interference coming to it; and the connector provides tight contact and is often supplemented with a retainer for reliability. All this allows you to achieve high quality connections and maximum purity of sound, even when using long wires. However, such inputs are rare — this is due not so much to their shortcomings, but to the fact that audio receivers are rarely used as linear balanced audio receivers.

— Coaxial S/P-DIF. A kind of S/PDIF digital audio interface that uses an electrical coaxial cable with RCA connectors (“tulip”) for connection. Such a cable, unlike optical (see below), is subject to electromagnetic interference to a certain extent, but is more reliable and does not require special care in handling. And the connection bandwidth is enough to transmit multi-channel audio up to 7.1. Note that despite the identical connectors, the coaxial digital interface is not compatible with analogue RCA (see below); and even cables for S / P-DIF are recommended to use specialized ones.

— Optical. A variation of the S/PDIF digital audio interface that uses a TOSLINK fiber optic cable connection. In terms of bandwidth, it is completely similar to the coaxial interface (see above), but it compares favorably with its complete insensitivity to electromagnetic interference. On the other hand, due to their design, optical cables are sensitive to sharp bends and mechanical stress — for example, accidentally stepping on such a cable can damage it.

— Balanced digital (AES/EBU). An interface used primarily in professional audio equipment. It can use different types of connectors, but is most often implemented via XLR. For more information about this connector and the principle of balanced connection, see "XLR (balanced)", but do not confuse these two interfaces: AES / EBU works with a digital signal transmitted over a single cable, regardless of the number of channels.

— Composite (video). An input for connecting a composite video signal. Uses the same RCA connector as many audio inputs, but is most often highlighted in yellow. The signal is transmitted in analogue format, via a single cable, which simplifies the connection, but limits the bandwidth; because of this, this standard is not suitable for working with HD. Nevertheless, it is very popular in modern video technology, in addition, it is found even in outdated devices (like VHS VCRs). Note that composite audio inputs are not provided in modern audio receivers — their role is played by standard RCA line inputs (see below).

— BNC. Bayonet type connector used to connect coaxial cable. Theoretically, it can be used for various purposes, but in fact it is most often used similarly to coaxial S / P-DIF, for digital analogue audio. BNC connectors are more reliable in connection due to the bayonet lock; there is also a version with a threaded fixation.

— Trigger. Service input that allows the receiver to turn on and off at the same time as other components of the audio system. Such an input is connected to the trigger output of a control device (for example, an amplifier), and when this device is turned on and off, a control signal is sent to the receiver. This eliminates the need for the user to separately manage the power on of each device.

— Control input (IR). Connector for connecting an external infrared remote control receiver. Such a receiver can be useful in cases where the signal from the remote control does not reach the built-in IR sensor of the receiver. Note that other components of the system that are compatible with the remote control and have IR control outputs, for example, players or tuners, can play the role of an external sensor.

Outputs

Outputs provided in the design of the device. Note that for receivers (see "Type") the presence of outputs for passive acoustics is mandatory by definition, and the players, on the contrary, do not have such outputs. Therefore, the presence / absence of such connectors is not separately indicated.

Preamplifier output (Pre-Amp). A preamplifier is an electronic unit designed to amplify an audio signal to line level. Accordingly, outputs of this type are actually line outputs for outputting sound to an external power amplifier, active acoustics, etc. For players (see "Type"), these are the main analogue audio outputs, and in receivers, Pre-amp outputs can be used in including for connecting equipment that works in parallel with passive speakers, which provides additional features for expanding the audio system. Most often, this interface uses paired RCA connectors (“tulips”), one for each stereo sound channel; less often — balanced XLR, also paired, for more details see "Inputs".

To the subwoofer. A separate output for connecting a subwoofer — a specialized speaker designed for low frequencies. Usually uses an RCA ("tulip") interface, but there may be other options. Anyway, this output receives the signal from the crossover, which "cuts" the mids and highs, leaving the bass with which the speaker works. This simplifies the connection and eliminates the need to look for external equipm...ent for the normal operation of the subwoofer — for example, the same crossover (although an external amplifier may be needed for passive "subwoofers").

— Coaxial S/P-DIF. A kind of S/PDIF digital audio interface that uses an electrical coaxial cable with RCA connectors (“tulip”) for connection. Such a cable, unlike optical, is subject to electromagnetic interference to a certain extent, but is more reliable and does not require special care in handling. And the connection bandwidth is enough to transmit multi-channel audio up to 7.1. Note that, despite the identity of the connectors, the coaxial digital interface is not compatible with analogue RCA; and even cables for S / P-DIF are recommended to use specialized ones.

— Optical. A variation of the S/PDIF digital audio interface that uses a TOSLINK fiber optic cable connection. In terms of throughput, it is completely similar to the coaxial interface, but it compares favorably with its complete insensitivity to electromagnetic interference. On the other hand, due to their design, optical cables are sensitive to sharp bends and mechanical stress — for example, accidentally stepping on such a cable can damage it.

— Balanced digital (AES/EBU). An interface used primarily in professional audio equipment. It can use different types of connectors, but is most often implemented via XLR. For more information about this connector and the principle of balanced connection, see “Inputs — XLR (balanced)”, however, these two interfaces should not be confused: AES / EBU works with a digital signal transmitted over a single cable, regardless of the number of channels.

— Composite (video). This output is usually provided in models equipped with a video input of the same standard. For composite connectors in general, see "Inputs". Here also note that the role of composite audio outputs in this case is played by the main outputs of the receiver, to which acoustics are connected — in other words, the sound accompanying the video is output directly to the standard speakers of the audio system.

— BNC. Bayonet type connector used to connect coaxial cable. Theoretically, it can be used for various purposes, but in fact it is most often used similarly to coaxial S / P-DIF (see the relevant paragraph), for digital analogue audio. BNC connectors are more reliable in connection due to the bayonet lock; there is also a version with a threaded fixation.

— Trigger. The trigger output is used to automatically turn on other audio system components connected to the receiver. When the receiver itself is turned on, a control signal is sent to this output, which “wakes up” the connected device (for example, an amplifier) and relieves you of the need to turn it on manually. Of course, to use this function, the external device must be equipped with a trigger input.

— Control output (IR). The control output allows you to use the receiver's built-in IR receiver to control other components in your audio system from the remote control, such as an amplifier in another room, out of range of the remote control. With this scheme of operation, the audio receiver actually plays the role of a remote sensor, receiving commands and transmitting them through the control output to another device. Note that the very presence of such inputs and outputs does not guarantee the compatibility of various devices, especially if they are produced by different manufacturers; Sharing details should be clarified in the official documentation.

Power consumption

The power consumed by the audio receiver during normal operation. Note that this parameter can be indicated in different ways: for example, some manufacturers measure it when the amplifier is operating at full power, while others measure it at 80% or 50% power. In addition, the power consumption of modern receivers is usually not so high as to put a serious strain on the power supply systems. Therefore, power consumption information usually plays a supporting role.
Yamaha R-N402 often compared
Yamaha R-N602 often compared