Dark mode
United Kingdom
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Phono Stages

Comparison Pro-Ject Tube Box DS2 vs Pro-Ject Phono Box RS

Add to comparison
Pro-Ject Tube Box DS2
Pro-Ject Phono Box RS
Pro-Ject Tube Box DS2Pro-Ject Phono Box RS
Compare prices 2
from £849.00 
Outdated Product
TOP sellers
FeaturesMM / MC pickupsMM / MC pickups
Tube
Dimensions206х227х91 mm206х200х72 mm
Weight1650 g2000 g
Specs
Frequency range20 – 20000 Hz20 – 20000 Hz
MM module
Signal to noise ratio (MM)93 dB91 dB
Harmonic distortion (MM)0.04 %0.019 %
Gain (MM)50 dB40 dB
Input load capacity (MM)100/ 220/ 320 pF100/ 200/ 300/ 420/ 520 pF
Input impedance (MM)47 kOhm47 kOhm
MC module
Signal to noise ratio (MS)93 dB91 dB
Harmonic distortion (MC)0.04 %0.019 %
Gain (MC)65 dB60 dB
Input load capacitance (MC)0.1/ 0.22/ 0.32 nF0.12 nF
Input impedance (MC)10 – 1000 Ohm10 – 1200 Ohm
Features
Adjustment
input sensitivity
input impedance
input capacitance
input sensitivity
input impedance
input capacitance
Noise canceling
External power supply
Connectors
Inputs
Phono RCA
trigger
Phono RCA/XLR
 
Outputs
RCA
 
trigger
RCA
XLR
 
Color
Added to E-Catalogoctober 2017april 2017

Tube

Phono correctors, the working circuits of which are made on the basis of lamps.

One of the main advantages of such audio devices is the notorious "warm tube sound", which many music lovers consider the most pleasant and natural. At the same time, this point is rather ambiguous. The fact is that the level of harmonic distortion in tube circuits is several times higher than in transistor circuits, but these distortions are quite specific — they are quite pleasant for human hearing and give the sound a characteristic "atmospheric". But the unequivocal advantage of lamp technology is a good margin for overload. On the other hand, such devices are much more expensive and more complicated than transistor ones, they require warming up after switching on, and the lamps themselves need to be changed periodically (on average, once every few years). As a result, there are relatively few such phono stages nowadays, and they are designed mainly for principled lovers of tube technology.

Frequency range

The range of sound frequencies reproduced by the phono stage. When evaluating this parameter, it is worth keeping in mind several important points. Firstly, in this case, not the entire bandwidth is taken into account, but the range in which the uneven frequency response of the phono stage (according to the RIAA standard) does not exceed the value specified by the manufacturer. Secondly, the human ear is only able to perceive sound within the range of 16-20,000 Hz (in some people, up to 22,000 Hz). Ideally, the audio system should cover this entire range — otherwise, some of the low and/or high frequencies may be cut off; but to provide a wider range from a practical point of view does not make sense. Nevertheless, there are phono stages with quite solid performance, for example, 5 – 35,000 Hz. These specifications are usually a "side effect" of high quality audio circuits and are advertised by the manufacturer for promotional purposes.

Another point to consider when choosing is the frequency range of other components of the audio system. For example, it is hardly worth looking for a phono stage with a lower threshold of 16 Hz, if the power amplifier only supports frequencies from 40 Hz and higher.

As a note to this clause, the RIAA ripple present in the frequency range may be indicated. In most models, it is from ±1 to ±6 dB; the lower the value, the smoother the frequency response and the better the sound.

Signal to noise ratio (MM)

The signal-to-noise ratio provided by the phono stage when working with an MM-type pickup (see "Intended use")

This parameter describes the relationship between the average output level and the average noise floor of the device. The higher it is, the clearer the sound is, the less extraneous interference it has. On the other hand, it is worth remembering that the overall sound quality provided by a phono stage depends on a number of other parameters. As a result, an advanced model with high sound quality may have a lower signal-to-noise ratio than a low-cost device.

Note that in universal phono stages (see "Intended use") the signal-to-noise ratio for MM cartridges is usually higher than for MC ones; this is due to the technical features of both.

Harmonic distortion (MM)

The coefficient of harmonic distortion provided by the phono stage when working with an MM type pickup (see "Intended use").

The lower this indicator, the less distortion the phono stage gives, the more reliable the output signal is. It is impossible to completely avoid such distortions, but it is possible to reduce them to a level that is not perceived by a person. So, it is believed that the level of harmonics of 0.5% and below is no longer audible even to a “trained ear”. However, it should also be borne in mind that the quality of the audible sound is also affected by distortion from other components of the audio system. Therefore, the harmonic distortion of the phono stage should not just be below 0.5%, but as low as possible. Values in hundredths of a percent are considered a good indicator, values in thousandths and below are considered excellent.

Gain (MM)

The gain provided by the phono stage when working with an MM type pickup (see "Intended use").

This parameter describes how much the signal level at the output of the phono stage increases relative to the level at the input. It is traditionally written in decibels; you can convert decibels into "times" using special formulas or tables. Knowing the gain, you can estimate the actual level of the output signal when using a particular pickup. For example, if the characteristics indicate 35 dB (56.2x), and the “head” outputs 5 mV, then as a result, the signal level at the output of the phono stage without additional processing will be 5 * 56.2 = 281 mV. Accordingly, the input sensitivity of the power amplifier with which this model is planned to be used should be less than 281 mV (however, 150 mV is considered the standard minimum for such amplifiers).

Note that the output level of MM cartridges is noticeably higher than that of MC cartridges, so the gains for them are generally lower (although there are exceptions).

Input load capacity (MM)

The input capacitance of the phono stage when working with an MM type pickup (see "Intended use").

This parameter determines compatibility with a specific pickup. The selection rule in this case is as follows: the total capacitance of the phono stage and connecting wires must correspond to the capacitance of the “head”, in extreme cases, at least not exceed it (otherwise the sound will deteriorate noticeably). In order to simplify this matching, it may be possible to adjust the input capacitance(see "Adjustments").

Signal to noise ratio (MS)

The signal-to-noise ratio provided by the phono stage when working with an MC-type pickup (see "Intended use")

This parameter describes the relationship between the average output level and the average noise floor of the device. The higher it is, the clearer the sound is, the less extraneous interference it has. On the other hand, it is worth remembering that the overall sound quality provided by a phono stage depends on a number of other parameters. As a result, an advanced model with high sound quality may have a lower signal-to-noise ratio than a low-cost device.

Note that circuits for MC cartridges usually give a lower signal-to-noise ratio than for MM cartridges; this is due to the technical features of both.

Harmonic distortion (MC)

The coefficient of harmonic distortion provided by the phono stage when working with an MC type pickup (see "Intended use").

The lower this indicator, the less distortion the phono stage gives, the more reliable the output signal is. It is impossible to completely avoid such distortions, but it is possible to reduce them to a level that is not perceived by a person. So, it is believed that the level of harmonics of 0.5% and below is no longer audible even to a “trained ear”. However, it should also be borne in mind that the quality of the audible sound is also affected by distortion from other components of the audio system. Therefore, the harmonic distortion of the phono stage should not just be below 0.5%, but as low as possible. Values in hundredths of a percent are considered a good indicator, values in thousandths and below are considered excellent.

Gain (MC)

The gain provided by the phono stage when working with an MC type pickup (see "Intended use").

This parameter describes how much the signal level at the output of the phono stage increases relative to the level at the input. It is traditionally written in decibels; you can convert decibels into "times" using special formulas or tables. Knowing the gain, you can estimate the actual level of the output signal when using a particular pickup. For example, if the characteristics indicate 74 dB (5010x), and the pickup outputs 0.5 mV, then as a result, the signal level at the output of the phono stage without additional adjustments will be 0.5 * 5010 = 1005 mV, which is more than enough for direct connection to power amplifier (the minimum level for this is 150 mV). At the same time, we note that among MC phono stages there are models with a rather low gain, designed for specific application formats — for example, to work as a preamplifier for an MM phono stage.
Pro-Ject Tube Box DS2 often compared