United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Chargers for Gadgets

Comparison Apple iPhone Lightning Dock vs Apple Watch Magnetic Charging Dock

Add to comparison
Apple iPhone Lightning Dock
Apple Watch Magnetic Charging Dock
Apple iPhone Lightning DockApple Watch Magnetic Charging Dock
Compare prices 2Compare prices 4
TOP sellers
Main
3.5 mm mini-Jack port for connecting headphones or speakers for music playback
Magnetic wireless charging for Apple Watch
Typedock with Apple Lightningfor smartwatches only
Smartphone mountmagnet
Charge current1 A
Power (with 1 device)5 W5 W
MFI certification
Charger connection portLightningLightning
Cable included++
Dimensions104x104x12 mm
Color
Added to E-Catalogdecember 2019august 2021

Type

Among modern household chargers (for home and office) there are both classic network models and wireless devices (in the form factor of stands or pads), as well as pass-through sockets, docking stations for Android and Apple. Devices for cars, in turn, are divided into traditional wired car chargers(including cigarette lighter splitters — see “Cigarette Lighter Splitter” for them) and wireless. Here is a more detailed description of these options:

— Network charger. Classic wired chargers plugged into sockets. Somewhat less convenient and functional than docking stations, but much more compact and for the most part quite suitable for travel, since they take up minimal space in luggage. And compared to wireless chargers, wired models are noticeably cheaper, compatible with more devices, and often also work much faster. In addition, it is easier to implement special powerful fast charging technologies in such devices. And in conjunction with the new GaN production technology, they can also be reduced in size.

GaN chargers. Chargers with GaN circuitry that can hold "multiple charges" in one compact housing. Instead of traditional silicon, their semiconductors use gallium nitride with increased voltage...conductivity. GaN chargers “refuel” gadgets at an accelerated pace through all available ports. Another significant advantage over traditional chargers is the reduction in the size of the charging unit without loss of power.

— Car charger. Devices designed for wired charging of gadgets from car on-board network. Usually, they use a standard cigarette lighter socket and are designed for cars and other similar equipment with 12 V networks, however, there are also models that are compatible with 24-volt networks of heavy trucks, buses, etc.; these nuances should be clarified separately.

— Wireless charger. Devices for charging gadgets wirelessly — usually, using Qi technology. Of course, the charger itself must be connected to the outlet using a cable, but the energy is transferred to the device being charged without any plugs and cables. The effective range of such a transmission is small, so this type of charger is traditionally made in the form of platforms or stands, where you need to directly place the charged gadgets. However, the wireless way of working is as user-friendly as possible, besides, it does not wear out the connectors; and some compact gadgets (for example, smartwatches) generally charge only in this way. The main disadvantages of this format are the high cost of chargers and limited compatibility (a relatively small number of gadgets, mostly quite expensive ones, support wireless charging). In addition, wireless chargers are less efficient than wired chargers, which increases procedure time and device power consumption. Thus, some models are equipped with ports for wired charging.
As for the differences between platforms and stands, the first form factor is more versatile and, together with the device being charged, takes up less space — the gadget lies flat on the platform. A platform is a good option for a portable device. The stand, in turn, assumes an inclined, almost vertical arrangement of the gadget — this allows you to see the display even while charging. On the other hand, such charger devices are more bulky than platforms and are more likely to be designed for stationary use.

— Wireless car charger. A rather specific variety: wireless charging devices powered by the vehicle's on-board network. Most often they are designed for a standard cigarette lighter plug with a voltage of 12 V, although it is technically quite possible to provide compatibility with 24-volt networks of trucks, buses and other heavy vehicles. The features of wireless charging are described in detail above, but here we note that driving in a car is associated with various shocks and tremors; therefore, such devices are made in the form of holders, and not stands/platforms. Such a holder may provide fastening on the dashboard and the ability to use the phone directly in the charging process (for example, as a navigator).

— Only for smartwatches. Chargers designed to be used exclusively with smartwatches and other wearable gadgets (such as fitness trackers). To be more precise, we are talking about gadgets that support an exclusively wireless format of work. Accordingly, the capabilities of a charger from this category are limited to the smartwatch charging area (usually only one), and there are no wired charging connectors in the design. Also note that chargers of this type are most often produced for a specific model or line of wearable gadgets, and compatibility with third-party devices in such cases is not guaranteed.

— Pass-through socket. Chargers with one or more sockets. In addition, they provide USB ports or specialized connectors for charging gadgets, while maintaining the availability of an outlet for standard household use. Most often, through sockets are combined with network chargers or GaN type chargers (see the corresponding paragraphs).

— Android dock stations. Docking stations designed to charge gadgets running Android OS. The docking station itself can be described as a stand with a wired charging feature. The gadget with such a design is installed vertically or almost vertically, with the plug down; and on the stand itself there is a power plug, which not only charges the installed device, but also plays the role of a latch. This plug can be in microUSB or USB-C format — both of these connectors are used in modern Android gadgets. It is also worth noting that some "docks" from this category have a narrow specialization and are made for specific device models (or devices from one manufacturer). However, there are also universal solutions where compatibility is limited by the type of connector and the screen size (moreover, the diagonal limitation can be quite solid — for example, up to 10.1").
In general, the docks are designed for permanent installation in one place. They are noticeably inferior to classic chargers in terms of ease of transportation, but they simplify the storage of gadgets and can be useful in some cases of their practical use — for example, when watching a movie from a tablet.

— Apple Lightning Dock. Docking stations designed for charging Apple gadgets and equipped with a Lightning connector (used in Apple portable technology since 2012). For more information about docking stations in general, see above, all this is true in this case too — with the adjustment for the fact that in the case of Apple technology, dock compatibility is usually limited only to the size of the device.

Smartphone mount

Way of mounting a smartphone on a charger.

It's the car chargers that are mainly equipped with smartphone mounts. Many of them also play the role of a holder that allows you to fix the gadget on the dashboard. However, there are also home chargers with this feature. In automotive models, the main methods of fastening are manual clamp, proximity sensor(touch clamp), magnetic retainer and gravity mechanism. And in household models there is also a special kind of magnetic latches — MagSafe. Here is a description of each of these options:

— Clamp. The simplest mechanical lock: two spring-loaded jaws that compress the device from the sides. The compatibility of "mechanics" with a specific phone is limited only by the size of the case; at the same time, the design of the spring jaws itself allows you to adjust the width within certain limits, and in some models, additional adjustment in width is also provided. Thus, the clips are compatible with numerous gadgets, while they are very simple and inexpensive. The disadvantages of this option include a somewhat lower reliability than, for example, in gravitational devices: the apparatus located in a conventional clamp, usually, is not supported by anything from below.

— Gravity clamp. A latch of this type covers the smartphone on the sides and...bottom, while the bottom support works as a trigger sensor: when it goes down under the weight of the gadget, the side jaws converge and compress the device from the sides. Accordingly, to remove the smartphone, you need to slightly lift it. Compatibility in such clamps is also limited only by the size of the device; at the same time, they are noticeably more reliable than conventional clamps, and they are somewhat easier to use, which is why they are more common.

— Magnet. Holder in the form of a strong permanent magnet. Such clamps are very easy to use, they are reliable and durable (there are no moving parts in the design); in addition, they have no restrictions on the size of the rechargeable gadget. On the other hand, two other restrictions are relevant for magnets — by weight (it should not be too big) and by materials (not every case, even a metal one, can be effectively magnetized). And although these points are taken into account in many devices with wireless charging, however, the possibility of using it with a specific smartphone (and especially a massive tablet) should be specified separately.

— Proximity sensor (touch clamp). Automatic latch with an electronic sensor that recognizes the proximity of the gadget or the user's hand. “On the way”, the jaws of the latch diverge by themselves, and when the device is installed, they are compressed; when the smartphone is removed, respectively, the clip reacts to the user's hand and disables the fixation. Such holders are very convenient, but relatively complex and expensive; In addition, the mechanism needs power to operate.

— Magnetic MagSafe. The latch used in chargers for the latest versions of the Apple iPhone. It is a magnetic disk that is attached to the back of the smartphone. The original proprietary charger with MagSafe has a very simple design — a disk with a cable connected to it. However, even this design provides additional convenience: by turning the disk, you can place the wire on the side of the device where it will not interfere when held in your hands. This allows you to conveniently use your smartphone (for example, play games) while charging. There are other varieties of MagSafe chargers available, including third-party brands; there are still relatively few such devices, but in the near future we can expect a change in the situation.

Charge current

The maximum current that the device is capable of delivering to the charging output. This is one of the key parameters for any charger, it directly determines its power and, accordingly, its efficiency with certain batteries. These points are described in detail in the “Power” paragraph below, but here we note that if several values are indicated in this paragraph, it means that the design provides for several connectors with different current specs (or several groups of connectors, each with its own amount of amperes per port) .

As for specific numbers, when charging from USB (used in most modern chargers), the maximum current up to 1 A is considered very limited, 1.5 A is low, 2 A, 2.1 A and 2.4 A are average values, and in the most powerful chargers, this figure can be 3 A, 3.4 A and even 5 A.
Apple Watch Magnetic Charging Dock often compared