United Kingdom
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Air Compressors

Comparison Forte COF-6 6 L
230 V
vs Odwerk TA 0610A 6 L
230 V

Add to comparison
Forte COF-6 6 L 230 V
Odwerk TA 0610A 6 L 230 V
Forte COF-6 6 L
230 V
Odwerk TA 0610A 6 L
230 V
Outdated Product
from $74.28 up to $75.19
Outdated Product
TOP sellers
Main
Oil free. Compact dimensions and light weight.
Compressor typepistonpiston
Designoil-freeoil-lubricated
Drivestraightstraight
Specs
Input performance80 L/min150 L/min
Rated pressure7 bar8 bar
Power0.75 kW0.8 kW
Rotation speed2850 rpm2850 rpm
Number of cylinders11
Number of steps11
Receiverhorizontalhorizontal
Receiver volume6 L6 L
Power sourcemains (230 V)mains (230 V)
General
Dimensions36x31x35 cm
Weight9.5 kg16 kg
Added to E-Catalogseptember 2018december 2013

Design

The criterion for separating compressors according to this parameter is whether oil is necessary for the normal operation of the device.

Oily. Compressors that use oil during operation have a high motor resource (due to the fact that friction in their mechanism is reduced due to the presence of lubrication) and a lower noise level than oil-free ones. On the other hand, they are much more difficult to maintain and more expensive to operate. the oil supply has to be replenished periodically; and during operation, such a unit should be located on a flat horizontal surface. In addition, the outgoing air contains tiny drops of oil. Therefore, oil-based devices are poorly suited for certain types of work — for example, in the food industry, where such impurities are unacceptable, the use of special fine filters will be required.

Oil free. The main advantage of oil-free models can be called the purity of the exhaust air — it does not contain oil droplets and in most cases does not require additional purification. This makes these compressors perfect for medical, food and paint applications. In addition, they are simpler in design (respectively, in repair), do not require the hassle of providing lubrication, and can work in almost any position. On the other hand, high friction of parts significantly increases wear, which accordingly affects the resource.

Input performance

The amount of air that the compressor is able to process per unit of time; usually stated in liters per minute. Performance, along with pressure (see below), is one of the most important parameters: it is it that primarily determines how compatible the compressor will be with one or another pneumatic tool.

It is worth choosing a model according to this indicator in such a way that it can be guaranteed to “pull out” all the tools that can be connected at the same time. Air consumption is usually directly indicated in the characteristics of each tool, and it is quite simple to calculate the total requirement. However, due to the design features, the compressor must have a certain performance margin; the specific value of this stock depends on a number of nuances.

The main point is that some companies indicate for their units the performance at the outlet (how much air is supplied to the tool), while others indicate at the inlet (how much air the compressor sucks in). Since no compressor is perfect, part of the air is inevitably lost during the compression process, so the amount of air at the outlet will always be less than at the inlet. Accordingly, if the output performance is indicated in the characteristics, a margin of 10-20% is recommended, and if the input is 35-40%.

There are also more complex techniques that allow you to more accurately derive the required performance depending on the characteristics of specific tools; they can be found in...special sources.

Rated pressure

The maximum pressure created by the compressor during operation. This parameter, as well as the performance described above, is very important for selecting a compressor for a specific pneumatic tool: it is necessary that the nominal pressure be not lower than the working pressure of the tool. At the same time, high pressure is not a problem — it can be reduced by the appropriate regulator on the gearbox.

Most modern compressors have a pressure rating of 8 bar, which is sufficient for most air tools. Units for 6 bar belong to the entry level, their main purpose is painting work, where high pressure is not required. There are also options for 10 bar and even more — they, usually, belong to specialized models and cost accordingly. Therefore, it is worth looking specifically for a high-pressure unit only if this parameter is critical for the planned work (for example, if you need a compressor for tyre fitting).

When selecting according to the nominal pressure, it must be taken into account that the maximum allowable pressure in the receiver is usually indicated as the nominal pressure. The pressure actually given out by the compressor to the outlet is often somewhat less, this is due to some design features. For the most popular nominal pressure options — 8 and 10 bar — the real figures are usually 2 bar less, i.e. 6 and 8 bar respectively.

Power

The power of the engine installed in the compressor. It is not the main parameter in evaluating the efficiency of the device — here the performance and nominal pressure play a decisive role (see above), and the engine is selected in such a way that its power is sufficient to ensure the claimed characteristics. However, this indicator still has practical significance: in compressors with an electric motor (and there are now most of them; see “Engine type”), the engine power determines the total energy consumption of the device, as well as the requirements for the network where it is planned to connect it (for more details, see “Voltage networks"). In addition, the power of the engine (regardless of its type) must be known in order to calculate the optimal performance value using some special formulas.

For internal combustion engines, power is traditionally expressed in horsepower (hp); you can convert it to watts in this way: 1 hp. = 735 W.
Forte COF-6 often compared