Dark mode
United Kingdom
Catalog   /   TVs & Video   /   Camcorders & Accessories   /   Camcorders

Comparison Panasonic HC-MDH3E vs Panasonic AG-AC30

Add to comparison
Panasonic HC-MDH3E
Panasonic AG-AC30
Panasonic HC-MDH3EPanasonic AG-AC30
Outdated ProductCompare prices 1
User reviews
0
0
0
1
0
0
1
0
TOP sellers
Featuresprofessionalprofessional
Media typeflash (memory card)flash (memory card)
Sensor
Sensor typeCMOSCMOS
Sensor size1/3.1"1/3"
Effective megapixels6.036.03
Camera lens
Focal length (35mm equivalent)29.5 – 612 mm29.5—612.0 mm
Aperturef/1.8 — f/3.6f/1.8 - f/3.6
Optical zoom20 х20 х
Digital zoom40 х10 х
Image stabilizationoptical / electronicoptical / electronic
Filter diameter49 mm49 mm
Manual focus
Video shooting
Video resolution1920x1080 px1920x1080 px
Frame frequency50 fps50 fps
Recording formatsMPEG-4 AVC/H.264MOV, MP4, AVCHD
Video recording speed50 Mbps, 28 Mbps, 24 Mbps, 17 Mbps50Mbps, 25Mbps, 21Mbps, 17Mbps,
Minimum illuminance1.2 lux1.4 lux
Night shooting
Shutter speed1/100 - 1/8000 с1/6 –1/8000 с
White balanceauto, indoor1, indoor2, sunny, cloudyauto, 3200K, 5600K, VAR (2000K–15000K)
Auto exposure11
Scene programmessport, portrait, spotlight, snow, beach
Sound recording2-channel Dolby Digital (AC-3)
Photo
Number of megapixels2.1
Max. photo size1920x1080 px
Screen
Screen size3 "3 "
Screen resolution460.8 K pixels460 K pixels
Touch screen
Features
Features
viewfinder
 
hot shoe
built-in speaker
detachable microphone
 
viewfinder
backlight lamp
hot shoe
built-in speaker
detachable microphone
direct copy to HDD
Memory and sockets
Memory card supportSD, SDHC, SDXCSD, SDXC, SDHC
Memory card slots22
Connectors
component
USB
HDMI
AV output
microphone input
 
headphone jack
 
USB
HDMI
AV output
 
XLR microphone input
headphone jack
Battery
Battery capacity2900 mAh2900 mAh
General
Dimensions (WxHxD)205x217x494 mm170x170x335 mm
Weight2330 g1600 g
Color
Added to E-Catalogjuly 2018december 2016

Sensor size

The physical size of the camcorder sensor. It is usually measured diagonally and is indicated in fractions of an inch — for example, 1/3 "or 1/2.33" (the second option is larger, respectively). In addition, sensors of a “photographic” format can be installed in video cameras, in which case the corresponding designation is used — for example, APS-C.

The larger the sensor, the higher the image quality it can provide (all else being equal). This is due to the fact that on larger sensors, each individual pixel is larger, more light falls on it, which increases sensitivity and reduces noise; this is especially important for shooting in low light. For amateur purposes, small sensors are quite enough, but in professional cameras (see "Features") this parameter is at least 1/3". The exception, however, are models with several sensors (see "Number of sensors") in them each individual sensor is quite small, and high quality is ensured by image processing features.

Focal length (35mm equivalent)

Focal length of a standard video camera lens in terms of a 35 mm full-frame sensor. This parameter is also called the "equivalent focal length" — EFL.

The focal length itself is the distance from the optical centre of the lens (when focus to infinity) to the sensor, at which the sharpest image is obtained on the sensor. It is one of the key characteristics of any lens, because. determines the viewing angles, the degree of approximation and, accordingly, the specifics of the use of optics. At the same time, it is impossible to compare different options in terms of the actual focal length: the laws of physics are such that with different sizes of sensors, the same focal length will give different viewing angles. Therefore, EFL was adopted as a universal characteristic and criterion for comparison. It can be described as the focal length that a 35mm lens with the same viewing angles would have.

The larger the focal length, the narrower the viewing angle will be and the higher the degree of approximation of the visible scene. Optics with EFL up to 18 mm belongs to the class of ultra wide-angle ("fisheye") and is used primarily to create artistic effects. Distances up to 40 mm correspond to "wide angles", 50 mm gives the same degree of approximation as that of the naked eye, the range of 70-100 mm is considered optimal for portrait shooting, and large values allow the use of optics already as a telephoto lens. Knowing these provisions, one can approximately...evaluate the capabilities of the lens and its suitability for certain tasks; there are more detailed recommendations, they are described in special sources.

Also note that modern video cameras are usually equipped with lenses with a variable focal length (zoom), which allows you to change the degree of approximation and viewing angle; see "Optical Zoom" for details.

Aperture

Aperture of a standard video camera lens.

This parameter describes how much the lens attenuates the light output. Usually it is written as a ratio between the diameter of the active hole and the focal length of the lens, while the first value is taken as one and denoted as f — for example, f/1.8 or f/5.6. Moreover, the smaller the number in such a record, the higher the aperture ratio: for example, in our example, the first option is “lighter” than the second. Also note that most lenses with a variable focal length (see above) also have a variable aperture — in such cases it is indicated by the range from maximum to minimum (from a smaller number to a larger one).

A high aperture ratio is important primarily when shooting in low light conditions: it allows you to capture an image without “lifting up” the sensor sensitivity and without creating additional artifacts in the form of noise, and in the photo shooting mode, you can also work with shorter shutter speeds (which is useful for dynamic scenes). In addition, the higher the aperture, the lower the depth of field and the easier it is to get a blurry background. Note that for simple everyday tasks this parameter does not play a decisive role, but in professional shooting it can be very significant.

Digital zoom

The degree (multiplicity) of zoom provided by the camcorders due to software methods, without changing the focal length of the optics (see "Optical zoom"). The key principle of such an zoom is that part of the image from the sensor is "stretched" to the entire frame. This somewhat worsens the “picture” — after all, not all effective pixels take part in its formation; and the higher the zoom, the worse the quality becomes. On the other hand, this method does not depend on the specifications of the lens and works even with the simplest lenses that do not have zoom lenses, and it is much easier to achieve high magnification than with the optical method.

In modern camcorders, there are two options for using digital zoom. So, among pocket devices (see "Features"), it may be the only available option — not all of them are equipped with zoom lenses. And in full-size models, digital zoom usually complements optical zoom and turns on after the lens reaches the limit of its capabilities.

Note that when shooting 3D (see above), this feature may not be available, and in professional models it is often not used at all.

Recording formats

Video file formats that the camera can use to store recorded footage. If you want to view these materials using a separate device (player, media centre, etc.), you should make sure that this player supports the appropriate formats, otherwise conversion may be necessary.

Video recording speed

The data transfer speed provided by the camera when recording video. This parameter is also called bitrate (i.e., the number of bits per unit of time). For any file format used for recording, the general rule is that the higher the bitrate, the better the image quality (especially for formats that use lossy compression). On the other hand, high speed have appropriate requirements for the capabilities of the memory cards used — for more details, see "Memory card support"; and it increases the size of the file accordingly. Therefore, many modern camcorders are able to work with different bitrates; this allows you to choose the best option depending on what is more important for you at the moment — maximum quality or the ability to work with a slow card.

At the same time, we note that in terms of quality, this parameter is important mainly for professional video shooting. If you need a camera for amateur purposes, there is no need to look for the maximum bitrate: after all, such models (and memory cards for them) cost accordingly.

Minimum illuminance

The lowest illumination of the scene being shot, at which the camera is able to provide an image of normal quality. Note that in devices with a night view function (see below), this parameter can be specified in different ways. In some models, minimal illuminance is implied, in which the camera can shoot without backlight and at the same time maintain colour reproduction (as in normal daytime shooting); in others — an "absolute" minimum of light, below which it is impossible to use even the night mode. This point should be clarified according to the official documents of the manufacturer.

Anyway, the lower this indicator, the less light the camera needs to work and the better it handles with shooting at dusk or even at night. Thanks to the use of special technologies, some models are able to work even in complete darkness, with an illumination of 0 lux; this is due to the fact that modern sensors are able to perceive infrared radiation invisible to the eye. However, more often than not, shooting still requires a certain amount of light — at least tenths of a lux. For comparison: an illumination of 0.1 lux approximately corresponds to a lunar night with a “half” phase of the moon, and 1 lux is comparable to a bright full moon in southern latitudes.

Shutter speed

The range of shutter speeds in which the camera is capable of operating during the shooting process.

Initially, shutter speed is the time during which light affects the photosensitive material (film) when shooting a single frame. For digital sensors, this is the period of time during which an image is read from the sensor to build a separate frame. When shooting video, this interval cannot be more than 1/n, where n is the frame rate (see above), but it can be less — for example, shooting at a frame rate of 30 fps and shutter speed of each frame 1/60 s. There are no such restrictions for the photo mode.

Long exposures are good because they allow the sensor to take in more light — accordingly, the “picture” is brighter, which is especially important in low light. At the same time, they increase the likelihood of getting a blurry image — due to the rapid movement of objects in the frame, the operator's hand shaking and other random camera movements that even the stabilization system is unable to compensate for. This effect can be useful for artistic motion blur, especially when shooting video, but in photo mode it is most often undesirable. Fast shutter speeds, on the other hand, allow you to get clear shots, but with less light, and in the case of video, even with the effect of sharp, jerky movements.

Accordingly, different exposure time options will be optimal for each situation, and the wider their range, the more opportunities the came...ra has to adjust to specific conditions.

White balance

Presets and white balance adjustment modes provided by the camera.

White balance is a characteristic that describes the qualities of the lighting of the scene and the distortion that this lighting introduces into the colours perceived by the camera. Its used because modern digital sensors are unable to independently adjust to different light sources, as the human eye does. In fact, this means that the same object shot under lighting with different colour temperatures (for example, under a “warm” incandescent lamp and a “cold” fluorescent lamp) will look different without adjustment. To avoid this, the white balance setting is applied.

The main options for such a setting used in modern cameras are as follows:

— Auto. In accordance with the name, in this mode, the camera electronics independently evaluates the specifics of the illumination of the scene being shot and makes appropriate corrections to the colour reproduction. This adjustment is the most convenient for the operator, because. does not require any additional actions from him — everything is done by automation. At the same time, no such adjustment system is perfect, and does not always provide 100% white balance for the current situation. Therefore, even in the simplest models like pocket ones (see "Features"), this option is rarely the only one, not to mention professional equipment.

— Presets. The ability to select white balance from several options that correspond to...standard shooting conditions — for example, “sunny day”, “cloudy”, “fluorescent lamp”, “incandescent lamp”, etc. Such a system is quite simple even for inexperienced users and at the same time quite reliable and versatile, although its specific capabilities directly depend on the number of presets.

— Manual. Manual white balance setting assumes that the operator himself “tells” the camera which object to consider pure white — based on this, the electronics calculate the lighting characteristics (unlike automatic mode, when the reference object is also determined without user involvement). The easiest way to do this is to use a regular sheet of paper, but the procedure also works with neutral grey objects. Manual mode allows you to very accurately set the white balance for a particular scene, but it requires some time and appropriate skills — and therefore is used mainly in professional camcorders.

— Temperature control. This function allows you to set a specific value for the colour temperature of the light source (in kelvins) — it is this temperature that will correspond to the white balance when shooting. This setup format is faster and more convenient than manual setup, but is not widely used. This is due to the fact that it is well suited only for studio conditions, where the characteristics of each light source are precisely known — in other cases, manual adjustment is usually more reliable.
Panasonic HC-MDH3E often compared
Panasonic AG-AC30 often compared