Dark mode
United Kingdom
Catalog   /   TVs & Video   /   Camcorders & Accessories   /   Camcorders

Comparison Blackmagic Pocket Cinema Camera 6K vs Blackmagic URSA Mini 4K EF

Add to comparison
Blackmagic Pocket Cinema Camera 6K
Blackmagic URSA Mini 4K EF
Blackmagic Pocket Cinema Camera 6KBlackmagic URSA Mini 4K EF
Compare prices 1Compare prices 1
TOP sellers
Featuresprofessionalprofessional
Media typeflash (memory card)flash (memory card)
Sensor
Sensor typeCMOSCMOS
Sensor sizeAPS-CAPS-C
Effective megapixels2.078.84
Camera lens
Interchangeable lens
Bayonet (mount)Canon EFCanon EF
Image stabilizationoptical
Manual focus
Video shooting
Video resolution6144x3456 px4096x2160 px
Frame frequency50 fps60 fps
Recording formatsCinemaDNG RAW and RAW 3:1, Apple ProRes XQ, 444, 422 HQ
Video recording speed135 Mbps, 81 Mbps, 51 Mbps, 34 Mbps265 Mbps, 125 Mbps, 250 Mbps, 165 Mbps
Sound recording48 kHz, 24 bit
Screen
Screen size5 "5 "
Screen resolution2073 K pixels
Touch screen
Features
Features
built-in speaker
built-in speaker
Memory and sockets
Memory card supportCFast card, SD cardCFast 2.0
Memory card slots22
Connectors
USB
HDMI
 
microphone input
XLR microphone input
headphone jack
USB
 
SDI
 
XLR microphone input
headphone jack
Battery
Battery typeLP-E6
Battery capacity1800 mAh
Battery life1 h
General
Dimensions (WxHxD)178x97x86 mm193x147x209 mm
Weight680 g2270 g
Color
Added to E-Catalogaugust 2019december 2016

Effective megapixels

The number of light sensitive pixels directly involved in the construction of the image. These are the dots on which the “image” projected by the lens onto the matrix falls. In addition to them, there are also service pixels that are not illuminated during camera operation — they provide auxiliary information necessary for processing the resulting image. Also, when calculating effective megapixels, the reserve area required for electronic stabilization is usually not taken into account (see "Image Stabilization").

The value of the number of effective pixels for different modes of operation of the camcorder will also be different. For example, when recording video, many cameras use multiple pixels to build a single dot on the image; this is due to the fact that the sensor resolutions significantly exceed those required for video shooting (for example, the Full HD standard technically corresponds to only 2.07 megapixels). As a result, the image quality depends more on the sensor size (see above) than on the resolution. And among sensors of the same size, high resolution allows user to get better colour rendering and higher clarity (however, not always — a lot also depends on the peculiarities of image processing). If we are talking about photography, then more megapixels means a higher resolution of the resulting image, but the quality of such a picture can be relatively low due to the increased noise level and low sensitivity of each individual pixel.

Image stabilization

An image stabilization method provided in the design of a video camera. The stabilization function itself is designed to compensate for small camera shakes so that they are not noticeable in the image. This is especially true when shooting handheld, and in fact most modern models are designed specifically for such usage. According to the method of work, there are such options:

Optical. A special mechanism with a system of gyroscopes and movable lenses, installed directly in the lens, is responsible for the operation of such stabilization systems. It introduces a correction for all tremors, vibrations, etc., and the “picture” falls on the already stabilized sensor. Optical systems are considered the most advanced and efficient, because. their work allows you to use the entire area of the sensor, fully exploit its capabilities and provide good image quality. Among the shortcomings, it is worth noting the increase in the cost and weight of the cameras, as well as a slight decrease in the reliability of the optics. At the same time, these moments are most often not critical, and stabilizers of this type can be used even in simple and inexpensive models.

— Electronic. Electronic stabilization is carried out due to the fact that not the entire area of the sensor, but only some of it, is involved in the formation of an image for a frame. Simply put, the camera electronics "takes into account" a certain area of the sensor and...transfers the image from it into the frame; and at small displacements, this "area of attention" is also displaced, due to which the visible image remains motionless. The advantages of electronic systems are simplicity of design, lightness, compactness and high reliability; they can be used with even the simplest lenses installed in pocket cameras (see “Features”). Their main disadvantage is the need to reserve a part of the sensor, which reduces the size and resolution of the actually involved area and adversely affects the image quality.

— Optical / electronic. In such systems, both the methods described above are used — both the mechanism in the lens and the reserve on the sensor. This provides extremely high vibration compensation efficiency — the image remains stable even in such conditions in which any single method would be useless. On the other hand, the disadvantages of both options also remain relevant, and the cost of cameras with this feature is quite high.

Video resolution

The maximum video resolution that the camera can capture. Resolution is the size of an image in points (pixels); usually it is written in two numbers, which correspond to the number of pixels horizontally and vertically.

The more pixels in the image — the clearer it is, the better you can see small details on it, however, the size of the video files increases accordingly. In addition, it is worth considering that in order to fully view the footage, you will need a screen of the appropriate resolution — otherwise all the advantages of the image will be negated. And this parameter also significantly affects the price of the device.

The smallest maximum resolution found in modern camcorders is about 720x480; the quality of such a "picture" can be compared with analogue television broadcasting. Resolution 1280x720 corresponds to the HD standard, it can be found among inexpensive TVs and monitors, and 1920x1080 (Full HD) is the most popular option among mid-range and top-class video devices. The maximum resolution used in modern consumer electronics (including camcorders) is 4K, 4096x2160; it is typical for the most advanced devices.

The vast majority of cameras are able to work not only with the maximum resolution, but also with several “more modest” options — for those cases where small file volumes are more important than high resolution.

Frame frequency

The highest frame rate provided by the camera when shooting video. The minimum frequency for normal viewing is the classic 24 fps used in cinema. At the same time, most modern video cameras are capable of providing up to 50 – 60 fps, and even higher frequencies can be used for the slow motion effect.

In fact, this indicator is important primarily when shooting dynamic scenes. The higher the frame rate, the smoother the fast motion will look in the frame, the less jerky it will be and the more pleasant the overall impression of the image will be. The reverse side of this is an increase in the size of recorded files (all other things being equal). Therefore, the frame rate can be made adjustable so that the operator can choose the best option for a particular situation.

Recording formats

Video file formats that the camera can use to store recorded footage. If you want to view these materials using a separate device (player, media centre, etc.), you should make sure that this player supports the appropriate formats, otherwise conversion may be necessary.

Video recording speed

The data transfer speed provided by the camera when recording video. This parameter is also called bitrate (i.e., the number of bits per unit of time). For any file format used for recording, the general rule is that the higher the bitrate, the better the image quality (especially for formats that use lossy compression). On the other hand, high speed have appropriate requirements for the capabilities of the memory cards used — for more details, see "Memory card support"; and it increases the size of the file accordingly. Therefore, many modern camcorders are able to work with different bitrates; this allows you to choose the best option depending on what is more important for you at the moment — maximum quality or the ability to work with a slow card.

At the same time, we note that in terms of quality, this parameter is important mainly for professional video shooting. If you need a camera for amateur purposes, there is no need to look for the maximum bitrate: after all, such models (and memory cards for them) cost accordingly.

Sound recording

The format in which the camera records sound during video recording. Typically, this section indicates the number of channels and the sound system used, the file format, or the characteristics of the audio stream, such as "2ch Dolby Digital (AC-3)" or "PCM, 16bit 48kHz, 2ch". In order not to go into technical details, we note that two channels are the minimum required for surround sound (stereo), and advanced models can work with multi-channel sound like 5.1. As for other specifications, you should pay attention to them when choosing a professional device (see "Features") — in amateur and especially pocket cameras, the sound format does not play a special role. Specific features of various formats are described in special sources.

Touch screen

The video camera has a touch screen — a display that responds to the user's touch. Such a screen greatly expands the possibilities for controlling the camera and can significantly simplify it. For example, working with the menu is much easier by pressing your finger directly on the lines on the screen; in addition, many models with this equipment allow you to select an object for focus by touching the image on the screen.

Memory card support

Memory cards types supported by the camcorder. In modern devices, there may be such options:

— SD (SDHC, SDXC). The most popular memory card format for various electronics, including camcorders. The original SD standard allows you to create storages up to 4 GB, the next SDHC — up to 32 GB, and its successor SDXC — up to 2 TB. Reading devices under a certain standard are compatible with earlier versions of cards, but not vice versa: for example, a camera with SD HC support will be able to work with regular SD, but not with SD XC. These types of cards may correspond to different speed classes. These classes are described in more detail in special sources, but here we note that class 4 is considered the minimum suitable option for recording Full HD video. And anyway, the speed of the card should not be lower than the video recording speed provided by the video camera (see above) — otherwise the device just can't function properly. It is also worth mentioning that the rather large size of SD cards (32x24 mm) makes it difficult to use them in portable devices; to solve the problem, the microSD standard appeared (see below).

— microSD. in internal design such cards are completely similar to the SD cards described above and differ from them only in their reduced size — 15x11 mm. This allows them to be used even in the most compact modern devices, however, with equal volume, such cards are more expensive than their full-size counterparts, and the size of m...ost modern camcorders allow the use of conventional SD. Therefore, this option is found only where compact size is crucial — primarily among pocket models (see "Features"). microSD cards also have HC and XC modifications and are divided into speed classes; they can be used in SD card readers using the simplest adapters, and sometimes without them at all.

— MMC. A standard similar in many respects to SD — up to the fact that such cards are fully compatible with SD card readers in terms of size and contacts. MMC capacity — up to 64 GB, however, they work a little slower. Because of this, this standard is practically not used “in its pure form”, its support is usually combined with support for the more popular SD.

— MS (Memory Stick). The standard created by Sony is used mainly in the technology of this company, including camcorders. There are many varieties of such media, and not all of them are mutually compatible. MS cards are quite expensive and not as versatile as SD cards, so many cameras that support them can also work with SD.

— CompactFlash (CF). A standard originally created for professional photography; among video cameras, it is also used in professional models (see "Features"). CF cards have a good capacity (up to 128 GB) and high speed; their main disadvantage is their large size, which limits their use in compact technology. There are two CF formats — Type I and Type II; cards of the second type are faster, but do not fit the card readers of the first type due to their greater thickness.

— SxS. The standard, created by Sony and SanDisk specifically for professional camcorders and film cameras, is used in top-class devices. Such cards have high speed of work due to the fact that they use the connection according to the PCI Express standard; and their shape allows to install them directly into the ExpressCard slot on a computer or laptop. The maximum capacity of such media is 32 GB.

— P2. A company standard created by Panasonic exclusively for professional video recording. Inside, the P2 card is an array of 4 SD storages, and externally it is identical to a PCMCIA computer card and can be installed directly into the appropriate slot. The volume of such media is up to 64 GB.
Blackmagic Pocket Cinema Camera 6K often compared
Blackmagic URSA Mini 4K EF often compared