United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Vivo Y17 128 GB vs Vivo Y15 64 GB / 4 GB

Add to comparison
Vivo Y17 128 GB
Vivo Y15 64 GB / 4 GB
Vivo Y17 128 GBVivo Y15 64 GB / 4 GB
Outdated Product
from £162.47 
Outdated Product
TOP sellers
Display
Main display
6.35 "
1544х720
268 ppi
IPS
6.35 "
1544х720
268 ppi
IPS
Display-to-body ratio81 %81 %
Hardware
Operating systemAndroid 9.0Android 9.0
CPU modelMediatek MT6765 Helio P35Mediatek MT6762 Helio P22
CPU frequency2.3 GHz2 GHz
CPU cores88
GPUPowerVR GE8320PowerVR GE8320
RAM4 GB4 GB
Memory storage128 GB64 GB
Memory card slotmicroSDmicroSD
Max. memory card storage128 GB256 GB
Test results
AnTuTu Benchmark88 000 score(s)77 000 score(s)
Geekbench4413 score(s)786 score(s)
3DMark Gamer's Benchmark8772 score(s)
Main camera
Lenses3 modules3 modules
Main lens
13 MP
f/2.2
13 MP
f/2.2
Ultra wide lens
8 MP
f/2.2
16 mm
8 MP
f/2.2
16 mm
Auxiliary lens
 /2 MP/
 /2 MP/
Full HD (1080p)30 fps30 fps
4K+
Flash
Front camera
Form factorteardropteardrop
Main selfie lens20 MP16 MP
Aperturef/2.0f/2.0
Full HD (1080p)++
Connections and communication
Cellular technology
4G (LTE)
4G (LTE)
SIM card typenano-SIMnano-SIM
SIM slots2 SIM2 SIM
Connectivity technology
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
aptX
NFC
Wi-Fi 5 (802.11ac)
Bluetooth v 5.0
aptX
 
Inputs & outputs
microUSB
mini-Jack (3.5 mm) bottom
microUSB
mini-Jack (3.5 mm) bottom
Features and navigation
Features
rear fingerprint scanner
FM receiver
noise cancellation
gyroscope
rear fingerprint scanner
FM receiver
noise cancellation
gyroscope
Navigation
aGPS
GPS module
GLONASS
digital compass
aGPS
GPS module
GLONASS
digital compass
Power supply
Battery capacity5000 mAh5000 mAh
Fast chargingPump Expressnone
General
Bezel/back cover materialplastic/plasticmetal/glass
Dimensions (HxWxD)159.4x76.8x8.9 mm159.4x76.8x8.9 mm
Weight191 g191 g
Color
Added to E-Catalogjuly 2019may 2019

CPU model

The most popular nowadays are chips from Qualcomm and MediaTek, CPUs from Unisoc are slightly less common. Qualcomm has several processors of each series, namely Snapdragon 778G, Snapdragon 7 Gen 1, Snapdragon 7+ Gen 2, Snapdragon 7s Gen 2, Snapdragon 7 Gen 3, Snapdragon 7+ Gen 3, Snapdragon 865, Snapdragon 870, Snapdragon 888, Snapdragon 8 Gen 1, Snapdragon 8+ Gen 1, Snapdragon 8 Gen 2, Snapdragon 8 Gen 3, Snapdragon 8s Gen 3. And Mediatek has a low cost series MediaTek Helio P and a line of advanced chipsets MediaTek Dimensity (Dimensity 1000, Dimensity 7000, Dimensity 8000, Dimensity 9000).

Knowing the name of the CPU model installed in the smartphone, you can find detailed data on a particula...r CPU and evaluate its level and general capabilities. This is especially true in light of the fact that these capabilities depend not only on the number of cores and clock speed, but also on the specific nuances of the design.

CPU frequency

The clock frequency of the CPU that the device is equipped with. For multi-core processors, which are standard in modern smartphones, the frequency of each individual core is implied; and if the processor has cores with different frequencies (see "Number of cores") — usually, the maximum indicator is given.

In general, high performance smartphones have high frequency of the processor. However, note that this parameter itself is not directly related to the capabilities of the CPU: many other features of the chip affect the actual performance, and often a low cost solution with a higher clock speed turns out to be less performant than an expensive one, and at the same time, presumably, more "slow" processor. In addition, the overall performance of the system directly depends on a whole set of other factors — primarily the amount of RAM. Therefore, when evaluating a smartphone, it is worth focus not so much on the frequency of the processor, but on the general specs of the system and visual indicators like the results in tests (see below).

Memory storage

The volume of storage installed in the phone.

This volume directly determines how much data can be stored on the phone without using removable memory cards. This indicator is especially important for models that don't have memory card slots. However, even if memory cards are supported, built-in storage is still preferable: at least it works faster, and it usually has fewer restrictions on its use (in particular, most smartphones allow you to install applications only on storage).

As for specific volumes, the actual minimum for a modern smartphone is 32 GB; less “capacious” devices are becoming increasingly rare these days. 64 GB is considered a comfortable minimum, 128 GB is considered average indicator, 256 GB - above average. Some high-end devices are equipped with 512 GB and even 1 TB< /a>.

We also note that the actual amount of memory available to the user will inevitably be somewhat less than the total, since part of the drive is occupied by operating system files.

Max. memory card storage

The largest volume of memory card with which the phone supports. For more information about the cards themselves, see "Memory Card Slot"; here we note that capacious cards often use advanced technologies that are not supported by all devices, and sometimes phones simply do not have enough power to process large amounts of data. Therefore, for the convenience of choosing in our catalog, the maximum supported volume is indicated.

In fact, there are cases when some devices may exceed the claimed characteristics. However, it is worth focusing on official data, because, if officially supported volume is exceeded, normal operation of the card is not guaranteed.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 900K points are considered high-performance according to the AnTuTu ranking.

Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.

Geekbench

The result shown by a device when undergoing a performance test (benchmark) in Geekbench.

Geekbench is a specialized benchmark designed for processors. Since version 4.0, it also includes tests for graphics processors, and by the end of 2019, version 5 of the benchmark was released. Typically, the specifications for portable gadgets include data specifically for the CPU. During testing, Geekbench simulates workloads that occur during real-world tasks, evaluating both single-core performance and the efficiency of multi-core operations. This provides a solid overview of the processor's capabilities in everyday use. Additionally, Geekbench is cross-platform, allowing for comparisons between the CPUs of different devices (smartphones, tablets, laptops, PCs). In reference materials, only the multi-core test results for the processor are usually provided.

3DMark Gamer's Benchmark

The result shown by the device when passing the 3DMark Gamer's Benchmark performance test.

3DMark is a series of benchmarks originally designed to test the graphics performance of a device; later, these tests were supplemented by checking the capabilities of the processor. Testing is carried out primarily in terms of performance in games (in fact, the benchmark itself is described as “a game without the ability to influence the process”), however, given that modern games can have very high requirements, 3DMark is a fairly visual tool for assessing the overall performance of the system . And since the latest versions of the test are made cross-platform, it also makes it possible to compare devices under different operating systems and even different classes (for example, smartphones with tablets). The more points this or that model received on this test, the more performant it is.

It is worth noting that the results of any benchmark are usually quite approximate, because. they depend on many factors that are not directly related to the system — from the load of the device with third-party programs and ending with the air temperature during testing. The error due to these factors is usually about 5 – 7 %; therefore, it is possible to speak of a significant difference between the two models only if the difference in their indicators goes beyond those 5 – 7%.

4K

The resolution and maximum frame rate provided by the phone's main camera when shooting UltraHD (4K) video at normal speed, without using slow motion (if available).

UHD 4K is the most advanced high-definition video standard in widespread use (there are more advanced standards, but they are almost never found in smartphones). It includes several resolution options; in smartphones, 3940x2160 and 4096x3112 are most common.

The frame rate determines how smooth the video will look, how clearly fast moving objects will be visible in it. With normal (not slow-motion) shooting in modern HD standards, including UHD, two options are actually used — 30 fps and 60 fps. The second option allows you to achieve very smooth video, with good motion detail in the frame and almost no blurring in dynamic scenes. However, such a frame rate in this case requires high processing power, so the ability to shoot Ultra HD 4K at 60 fps is found mainly in high-end smartphones. Speeds above 60 fps are already intended for shooting slow-motion video (slow-mo); for more on this, see “Slow-mo”, here we note that slow-mo is quite difficult to implement in smartphones in 4K resolution, again due to high hardware requirements.
Vivo Y17 often compared
Vivo Y15 often compared