Dark mode
United Kingdom
Catalog   /   TVs & Video   /   TVs

Comparison Skyworth 43Q3 43 " vs Skyworth 43E6 43 "

Add to comparison
Skyworth 43Q3 43 "
Skyworth 43E6 43 "
Skyworth 43Q3 43 "Skyworth 43E6 43 "
Outdated ProductOutdated Product
TOP sellers
Main
Android TV 8.0 with full voice control (with future update). HDR support. 4K screen resolution. Soundbar 25W.
Size43 "43 "
Operating systemAndroid TVAndroid TV
Display
MatrixIPS
Screen surfaceanti-glaregloss
Resolution3840x2160 px1920x1080 px
Upscalingup to 4K
Brightness420 cd/m²380 cd/m²
Static contrast1 500:11 200:1
Response time8 ms8 ms
Frame rate100 Hz60 Hz
HDR supportHDR10
Multimedia
Sound power25 W20 W
Number of speakers24
Subwoofer
Audio decodersDTS TruSurroundDolby Digital
Digital tuner
DVB-T2 (terrestrial)
DVB-C (cable)
DVB-S (satellite)
DVB-S2 (satellite)
DVB-T2 (terrestrial)
DVB-C (cable)
 
 
Picture-in-picture
Features
Features
Wi-Fi
Bluetooth
voice control
Google Assistant
Wi-Fi
 
voice control
Google Assistant
Connectors
HDMI33
HDMI versionv 2.0
Additional inputs
USB
LAN
composite AV input
USB
LAN
composite AV input
Outputs
optical
optical
General
Wall mountVESA 200x200 mmVESA 200x200 mm
Power consumption57 W
Dimensions without stand (WxHxD)963x559x99 mm
Weight9.4 kg
Color
Added to E-Catalogjanuary 2019january 2019

Matrix

The type of matrix used in the TV. Among them, OLED, QLED, QD-OLED and NanoCell deserve the most attention, which are found in TVs of the relevant price category. Now more about each of them and other more classic options:

— OLED. TVs with screens that use organic light-emitting diodes — OLED. Such LEDs can be used both to illuminate a traditional LCD matrix, and as elements from which a screen is built. In the first case, the advantages of OLED over traditional LED are compactness, extremely low power consumption, backlight uniformity, as well as excellent brightness and contrast ratios. And in matrices, consisting entirely of OLED, these advantages are even more pronounced. The main disadvantages of OLED TVs are the high price (which, however, is constantly decreasing as the technology develops and improves), as well as the susceptibility of organic pixels to burn-in during long-term broadcast of static images or pictures with static elements (TV channel logo, information panel, etc.).

— QLED. TVs with screens using "quantum dot" technology — QLED. Such screens differ from conventional LED matrices in the design of the backlight: multilayer colour filters in such a backlight are replaced with a thin-film light-transmitting coating based on nanoparticles, and traditional white LEDs are replaced with blue ones. This a...llows to achieve a significant increase in brightness and colour saturation at the same time as improving the quality of colour reproduction, besides, it reduces the thickness and reduces the power consumption of the screen. The disadvantage of QLED matrices is traditional — the high price.

— QD-OLED. A kind of hybrid version of matrices that combine “quantum dots” (Quantum Dot) and organic light-emitting diodes (OLED) in one bottle. The QD-OLED modification was introduced by Samsung at the end of 2021 in response to advanced OLED panels from LG. The technology takes the best from QLED and OLED: it is based on blue LEDs, self-luminous pixels (instead of external backlighting) and “quantum dots”, which play the role of colour filters, but at the same time practically do not attenuate the light (unlike traditional filters) . Thanks to the use of a number of advanced solutions, the creators managed to achieve very impressive characteristics, significantly superior to many other OLED matrices. Among them are high peak brightness from 1000 nits (cd/m²), excellent contrast and black depth, as well as colour coverage of over 90% according to the BT.2020 standard and more than 120% according to DCI-P3. Such matrices are found mainly in flagship TV panels.

— IPS. A type of matrix originally designed for high quality colour rendering. Indeed, IPS screens produce bright and rich colours, have a good colour gamut, and demonstrate wide viewing angles. The initial disadvantage of this technology was the low response time, but in modern modifications of IPS this point has been practically eliminated. Matrices of this type are very popular in the advanced budget and mid-price segment of TV panels.

— *VA. In this case, we mean one of the varieties of VA (Vertical Alignment) type matrices - MVA, PVA, Super PVA, etc. Specific varieties may vary slightly in properties, but they all have common features. In fact, *VA matrices are a more affordable alternative to IPS panels: they are relatively inexpensive, provide fairly good colour reproduction and viewing angles of up to 178°. The main disadvantage of such screens is the long response time, but in modern models this has been practically eliminated thanks to the constant improvement of technology. *VA matrices are used in TVs that are positioned as functional and at the same time affordable models.

— PLS. In fact, it is one of the varieties of the IPS matrices described above, developed by Samsung. According to the manufacturer, in such matrices it was possible to achieve higher brightness and contrast than in traditional IPS, as well as to slightly reduce the cost.

NanoCell. Matrix based on quantum dots. This type of matrix is used in LG TVs and was first introduced in 2017. NanoCell matrices use the structure of classic LCD displays. But unlike the latter, they use so-called quantum dots instead of the classic general backlight, which provide monochromatic light. NanoCell technology reduces power consumption while increasing colour gamut and viewing angle. It is worth noting separately that NanoCell matrices are not the only ones using quantum dot technology. Similar solutions are offered by: Samsung (QLED matrix), Sony (Triluminos matrix), Hisense (ULED).

Screen surface

The type of coating used on the TV screen.

Matte. Historically, the first type of coating for LCD screens, which is often found today. Screens with such a coating generally have average characteristics of brightness, saturation and colour reproduction quality, in terms of these indicators they are inferior to glossy counterparts. However, the matte coating has one important advantage: it has virtually no glare from ambient light. In some situations, this can be an important advantage — for example, if the TV is installed opposite the window. And for some users it is more pleasant to look at the screen without glare, albeit relatively dim.

Glossy. A coating designed to improve the brightness and colour quality of the visible image compared to matte screens. The creators have managed to achieve this goal: "glossy" screens really provide rich, vibrant colours and a brighter image. The key disadvantage of such screens is the appearance of glare from ambient light on them — this can ruin the whole viewing experience. Because of this, the classic glossy coating is practically not used today, anti-glare solutions have taken its place (see below).

Glossy (anti-glare). Modification of the glossy coating, created, as the name implies, in order to eliminate the main drawback of the classic gloss — glare from external lighting. This is not to say th...at such screens do not glare at all, but there are much less reflections on them than on ordinary glossy ones. As for the image quality, it is at least not much worse, and often even better (especially since such coatings are constantly being improved). Thanks to all this, most modern TVs of all price categories are equipped with anti-glare screens.

Resolution

Screen resolution - its size in pixels horizontally and vertically. Other things being equal, a higher resolution provides better image quality, but such a screen costs more and requires relevant content.

The set of resolutions found in modern TVs is quite extensive, but they can be roughly divided into several groups: HD, Full HD, Ultra HD 4K, Ultra HD 5K and Ultra HD 8K. Here are the main features of each option:

— HD. Screens designed for HD 720p. The standard frame size in such a video is 1280x720, however, for a number of reasons, most HD TVs have somewhat larger sizes — 1366x768. In addition, this category usually includes models with resolutions from 1280x768 to 1680x1050, as well as 1024x768 screens. In general, HD 720p resolutions are mostly found on low-cost TVs with relatively small screens.

— Full HD. TVs designed for Full HD 1080p video, with a frame size of 1920x1080. Most models from this category have exactly this screen resolution — 1920x1080; other options are noticeably less common — in particular, 1920x1200 and 2560x1080. In general, Full HD screens provide good detail at a relatively low cost, making them extremely popular in mid-range models and inexpensive large-format TVs.

— Ultra HD 4K. This format provides different options in resolutions, however, for TVs, the actual stan...dard is 3840x2160, other options are almost never found. In general, this is a fairly high resolution, which is typical mainly for premium models; a common feature of such models is the large size — from 40" and more.

— Ultra HD 5K. The Ultra HD image format is more advanced than 4K, but it is extremely rare in TVs — these are mainly ultra-wide models with a resolution of 5120x2160.

— Ultra HD 8K. A standard that assumes a size of about 8K pixels horizontally; one of the options for this resolution, found in TVs — 7680x4320. Thus, UHD 8K is twice the size of 4K on each side and four times the total number of pixels, resulting in extremely sharp and detailed images. On the other hand, such screens are very expensive, despite the fact that nowadays even 4K is already considered a very advanced standard. Plus, there are not many video devices and content that meet this standard. Therefore, 8K TVs are still extremely rare, they include mostly high-end flagship models with a size of at least 65".

Upscaling

TV support for Upscaling function. This feature is only available on models with 4K and 8K resolution screens.

Upscaling to 4K allows you to increase the resolution of the original “picture” to 4K (3840x2160), if it was initially lower - for example, viewing a movie in 4K that was originally recorded in Full HD (1920x1080). In this case, we are not just talking about “stretching” the image to fill the entire screen (all TVs are capable of doing this), but about special processing, thanks to which the actual video resolution is increased. Of course, such video will still be inferior to content originally recorded in 4K; however, upscaling provides a noticeable improvement in quality compared to the raw signal.

Upscaling to 8K works on the same principle, only relevant for 8K TVs.

Brightness

The maximum brightness of the image provided by the TV screen.

The image on the screen should be bright enough so that you do not have to strain your eyes unnecessarily to view it. However, too high brightness is undesirable — it will also lead to fatigue. The optimal brightness level depends on the surrounding conditions: the more intense the ambient light, the brighter the TV screen should be. So, on a sunny day, the screen may have to be “turned up” to the maximum, and in the evening, in dimmed light, a relatively dim image will be more comfortable. In addition note that large screens require higher brightness, since they are designed for a greater distance from the viewer.

Thus, the higher the number in this paragraph, the greater the margin of brightness this model has, the better it will show itself in intense ambient light. The lowest indicator sufficient for more or less comfortable viewing in any conditions is 300 cd/m² for models with a diagonal of up to 32", 400 cd/m² for models in the range of 32 – 55" and 600 cd/m² for large screens of 60" and more. In this case, the brightness margin anyway will not be superfluous. But with lower indicators, you may have to darken the room somewhat for comfortable viewing.

Static contrast

The level of static contrast provided by the TV screen.

Contrast in a general sense is the ratio in brightness between the brightest whites and the darkest blacks that the screen can produce. Other things being equal, the higher the screen contrast, the better the quality of colour reproduction and detail, the lower the likelihood that it will be impossible to see details in too bright or too dark areas of the image. Static contrast, on the other hand, describes the maximum difference in brightness that can be achieved within one frame without changing the brightness of the image — this is its difference from dynamic contrast (see below).

The values of static contrast are much lower than those of dynamic, but this characteristic is the most "honest". It is on it that the properties of the image seen on the screen at a particular moment depend, it is describes the basic properties of the screen, without taking into account the software tricks provided by the manufacturer in the hardware of the TV.

Frame rate

The highest frame rate supported by the TV.

Note that in this case we are talking specifically about the screen’s own frame rate, without additional image processing (see “Index of dynamic scenes”). This frequency must be no lower than the frame rate in the video being played - otherwise there may be jerks, interference and other unpleasant phenomena that degrade the quality of the picture. In addition, the higher the frame rate, the smoother and smoother the movement in the frame will look, and the better the detail of moving objects will be. However, it is worth noting here that playback speed is often limited by the properties of the content, and not by the characteristics of the screen. For example, films are often recorded at a frequency of only 30 fps, or even 24 - 25 fps, while most modern TVs support frequencies of 50 or 60 Hz. This is enough even for viewing high-quality content in HD resolutions (speeds above 60 fps in such video are extremely rare), but there are also “faster” screens on the market: 100 Hz, 120 Hz and 144 Hz. Such speeds, as a rule, indicate a fairly high class of the screen; they also often imply the use of various technologies designed to improve the quality of dynamic scenes.

HDR support

TV support for high dynamic range technology — HDR.

This technology is designed to expand the range of brightness reproduced by the TV; Simply put, an HDR model will display brighter whites and darker blacks than a regular TV. In fact, this means a significant improvement in colour quality. On the one hand, HDR provides a very "live" image, close to what the human eye sees, with an abundance of shades and tones that a normal screen cannot convey; on the other hand, this technology allows to achieve very bright and rich colours.

However for the full use of this feature, you need not only an HDR TV, but also content (movies, TV broadcasts, etc.) that was originally created for HDR. Also note that there are several different HDR technologies that are not compatible with each other. Therefore, when buying a TV with this feature, it is highly advisable to clarify which version of HDR it supports (HDR10, HDR10 + or Dolby Vision). And the following are found:

— HDR10. Historically the first of the consumer HDR formats, less advanced than the options described below but extremely widespread. In particular, HDR10 is supported by almost all streaming services that provide HDR content, and it is also common for Blu-ray discs. Allows to work with a colour depth of 10 bits (hence the name). At the same time, devices of this format are also compatible wi...th content in HDR10+, although its quality will be limited by the capabilities of the original HDR10.

— HDR10+. An improved version of HDR10. With the same colour depth (10 bits), it uses the so-called dynamic metadata, which allows transmitting information about the colour depth not only for groups of several frames, but also for individual frames. This results in an additional improvement in colour reproduction.

– Dolby Vision. An advanced standard used particularly in professional cinematography. Allows to achieve a colour depth of 12 bits, uses the dynamic metadata described above, and also makes it possible to transmit two image options at once in one video stream — HDR and standard (SDR). At the same time, Dolby Vision is based on the same technology as HDR10, so in modern video technology this format is usually combined with HDR10 or HDR10+.

Sound power

The nominal power of the sound produced by the TV's sound system.

The larger the screen and the greater the estimated distance to the viewer, the more powerful the sound system must be in order to be heard normally. Manufacturers take this moment into account, moreover, most often they also provide a solid volume margin. So if a TV is bought for home viewing in a quiet, calm environment, you can not pay much attention to the sound power: it is guaranteed to be enough for such a usage. It makes sense to specifically look for models with high-power speakers for a noisy environment — for example, a cafe or other public space. Detailed recommendations on this matter can be found in special sources, but here we note that even in such cases, connecting external speakers can be a good alternative.
Skyworth 43Q3 often compared