United Kingdom
Catalog   /   Sports & Outdoor   /   Cycling & Accessories   /   Bikes

Comparison Formula Thor 1.0 DD 27.5 2019 vs Ardis Infinity AMT 26

Add to comparison
Formula Thor 1.0 DD 27.5 2019
Ardis Infinity AMT 26
Formula Thor 1.0 DD 27.5 2019Ardis Infinity AMT 26
Outdated Product
from $174.96 up to $184.40
Outdated Product
TOP sellers
Model year2019
Type
mountain (MTB)
mountain (MTB)
Frame and suspension
Frame size19"19"
Frame materialaluminiumsteel
Suspensionhardtailfull suspension
Suspension type (fork)spring-elastomerspring-elastomer
Fork travel110 mm80 mm
Fork materialaluminium
Suspension type (rear suspension)spring-elastomer
Wheels and brakes
Wheel size27.5 "
26 " /2.1"/
Tyre
Wanda /2.1"/
CST MTB
Rim materialaluminiumaluminium
Rimdouble walldouble wall
Front brake
mechanical disc /rotor 160 mm/
mechanical disc
Rear brake
mechanical disc /rotor 160 mm/
mechanical disc
Handlebar and transmission
Speeds2121
Chainrings3
/crank: Prowheel, 42-34-24T/
Freewheel cogs77
Freewheel/cassette modelShimano MF-TZ21CP
Bottom bracket modelXR-A01
Front derailleurSypo YD-Q50Shimano FD-TY10
Rear derailleurShimano Tourney TZ50Shimano RD-TZ50
Shifter typetriggergrip shift
Shifter modelShimano EF500Shimano SL-RS35
Chain modelTECКМС Z51
Handlebar typestraightstraight
General
Equipment
chain guard
kickstand
chain guard
 
Saddle modelCorrado MTB
Pedal modelFPD MTB
Weight15.8 kg19.8 kg
Color
Added to E-Catalogseptember 2018august 2014

Model year

The year to which the manufacturer classifies the bicycle (more precisely, the model range that includes this model).

The significance of this parameter is that the model range is updated every year, and two bicycles with the same name, but from different years, can differ significantly in characteristics and equipment. At the same time, new models ( 2024, 2023) usually cost more, and older ones ( 2022, 2021, etc.) are sold at reduced prices.

It is worth considering that a later year of manufacture in itself does not necessarily mean more advanced characteristics - manufacturers can change them in the direction of simplification. So the model of previous years may be in no way inferior to the new bike.

Frame material

Steel. Steel is distinguished by high strength and rigidity, in terms of resistance to deformation, it noticeably surpasses other alloys and is inferior only to carbon fiber. At the same time, such frames dampen vibrations well, are inexpensive, and in the event of a breakdown, they are easily repaired. On the other hand, steel is heavy, three times heavier than aluminium and twice as heavy as titanium; therefore, such frames are found mainly among inexpensive mountain and city bikes, for which a lot of weight is not critical. It is also worth considering that this material is susceptible to corrosion if the protective coating is damaged.

Chromium molybdenum steel(Cro-Mo). An advanced variation of the steel described above. By themselves, chromium-molybdenum alloys have high strength and reliability, and frames made from them can have different wall thicknesses (depending on the load that a particular section is subjected to) — this allows you to slightly reduce weight. Thanks to this, Cro-Mo alloys are found even among fairly advanced road bikes, and they are also popular in touring models. At the same time, such frames cost much more than “ordinary” steel ones.

Aluminium. Actually, bicycles do not use pure aluminium, but various alloys based on it. They differ somewhat in characteristics, but they have a number of common features, the main of whi...ch is low weight combined with good strength characteristics. Due to this, aluminium alloys are widely used in road bikes, as well as in touring mountain bikes (see “Intended Use”). The main disadvantage of these materials is rigidity: they absorb vibrations worse than steel, which is why they are poorly suited for models without shock absorption (see below), and with a strong impact, such a frame will break rather than bend.

Carbon. Resin-bonded carbon fiber composite. It is used in high-end bicycles, as it is very expensive, but it is characterized by very high strength combined with low weight. Moreover, the properties of carbon fiber make it possible to increase strength not just in certain areas, but in certain directions, which contributes to even greater reliability. Note that carbon frames can be either solid (monolithic) or composite — in the latter case, individual elements are connected by metal parts, which reduces the cost, but makes the structure susceptible to corrosion. It is also worth considering that the quality of carbon in general depends on the price category of the bike, and relatively inexpensive frames can be sensitive to strong point impacts. This material is almost impossible to repair.

— Titan. A fairly advanced material that combines high strength, elasticity (which provides soft vibration damping), corrosion resistance and very low weight. However, the cost of such frames is quite high, and therefore they are used mainly in premium mountain and road bikes.

— Magnesium alloy. This material is notable primarily for its very low weight (many times lighter than aluminium), while it has good stiffness and elasticity characteristics, dampens vibrations well, and its price is relatively low. At the same time, magnesium alloys have a number of significant drawbacks. In particular, they do not tolerate impacts, especially point impacts, and are also extremely sensitive to corrosion even with minor damage to the protective coating, which is why such frames are very demanding for care and storage.

Suspension

The presence or absence of a depreciation system on a bicycle, as well as the type of this system.

Without depreciation (rigid). In such models, the wheels are fixed directly to the rigid elements of the frame; there are no depreciation devices. Due to this, the design of the bicycle is simple, the weight is small, the cyclist feels all the features of the road topography as much as possible, and the maximum efficiency of pedaling is also achieved, which is important, for example, for road models (see "Destination"). At the same time, structural rigidity is a "double-edged sword". On the one hand, "feeling for the road" is important for BMX and some mountain models (see "Purpose"); on the other hand, the lack of shock absorption significantly increases the load on both the structure and the rider himself, leads to increased wear, fatigue and some risk of injury on rough roads.

Depreciation of the front fork (hard tail). The most popular type of cushioning in adult bikes (see "Age Group"), especially urban and mountain types (see "Purpose"). In accordance with the name, in such bicycles, the shock-absorbing device is installed only on the front fork, while the rear wheel is rigidly fixed. The presence of a shock absorber somewhat increases the weight of the structure and complicates its maintenance, however, the advantages of such a scheme significantl...y outweigh the disadvantages: hard-tails combine good handling, “road feel” and ride comfort, including and on rough terrain.

— Rear fork. Bicycles in which only the rear wheel is damped, while the front wheel is rigidly fixed. The rear shock absorber is designed to provide additional comfort when hitting various bumps, and the absence of a front shock absorber reduces the overall cost of the machine. This option is found mainly in urban models, including electric bicycles (see "Application"); in other varieties, the use of rear shock absorption is not practical.

— Two-suspension (full suspension). Bicycles equipped with shock absorbers on both wheels — a fork in front and a special suspension in the back. Such models are as comfortable as possible for driving on rough terrain, because. They dampen the vibrations felt by the cyclist best and provide the best grip on uneven tracks. At the same time, the presence of a rear shock absorber "eats" part of the energy coming from the pedals, and you have to spend more effort to ride. To avoid this, many two-suspension bikes can be provided with front and rear suspension lockouts (see below), but full suspension complicates the design anyway, increases its weight and price. Therefore, this type of cushioning is relatively rare, mainly in certain varieties of mountain bikes (in particular, for cross-country and freeride; see "Purpose").

Fork travel

Front fork travel on bicycles with damped suspension (see "Suspension"). Roughly speaking, the travel of a fork is the maximum distance that its size can be reduced by compression during shock absorption. The longer the fork travel, the better the shock absorption and “soft” ride it provides, but not all bikes require a lot of travel. Even within the same type (see “Purpose”), depending on the specific application and riding style, the optimal fork travel will be different — for example, freeride mountain bikes need good shock absorption, and for cross-country, on the contrary, a long fork travel will be redundant.

In general, if you do not plan on extreme cross-country riding or doing cycling tricks, this parameter is not critical. However, when choosing a bike for serious cycling, it is worth checking the recommended fork travel values (according to specialized literature or from professionals) and making sure that the desired model corresponds to them.

Fork material

— Aluminium. In this case, aluminium is the simplest and most unpretentious option. Its advantages include light weight; on the other hand, in the absence of shock absorption, the steering wheel with such a fork is highly susceptible to vibrations, and in terms of durability, aluminium is somewhat inferior to steel.

— Steel. Another relatively simple option, which at the same time is considered more advanced than the aluminium described above, and is found even in fairly expensive pro-level bikes. This is due to the fact that steel is noticeably stronger and more durable, as it is not as susceptible to "metal fatigue". However such forks weigh a little more than aluminium ones.

— Chromium molybdenum steel. A type of steel that is more advanced than more traditional grades. Among the main advantages of such alloys are high strength and reliability; at the same time, due to such properties, individual elements of the forks can be made thinner, and the forks themselves can be made lighter than ordinary steel ones. The main disadvantage of Cro-Mo steel is the rather high cost.

— Carbon. Lightweight and high-strength carbon fibre forks effectively dampen small bumps in the road under the wheels of the bike and slightly spring on small potholes, thereby providing cushioning on bumpy roads. The carbon fork facilitates the design of the front of the bike. Most often it is found on board "highways" and "gravel roads", less often it is installed in o...ff-road fatbikes. Vulnerable point — carbon forks break under the influence of strong point impacts.

Suspension type (rear suspension)

Type of rear suspension damping in full suspension bicycles (see "Suspension"). To date, there are such options:
  • Spring-elastomer.
  • Spring-oil.
  • Air-oil.
  • Air.
The first three options are described in detail above in the "Type of cushioning (fork)" section above. In air systems, as the name implies, the working element is air, which acts as both a damper and a shock absorber. This is very convenient due to the ability to change the stiffness of the suspension by adjusting the pressure in the system — the higher the pressure, the harder the damping. However, such shock absorbers are prone to rapid failure due to wear of the seals and require more careful maintenance than similar air-oil shock absorbers in many respects.

Wheel size

The nominal diameter of the bicycle wheels. Usually, this paragraph actually indicates the size of the bicycle tyres supplied in the kit, more precisely, the outer diameter of the tyres.

Wheel diameter is traditionally indicated in inches. For bicycles of different purposes and age groups (see paragraphs above), there are certain size standards. So, adult mountain models are equipped mainly with 26 " wheels, "road" and urban ones — with a slightly larger diameter (mostly 28 "), and BMX for the most part — much smaller; children's and teens' bikes have smaller wheels than similar adults' bikes.

Other things being equal, larger tyres hold speed better and work out small bumps on the road; and relatively small wheels are more “sticky”, they provide more torque and better traction. This is the reason for the above-described difference in wheel sizes between bicycles for different purposes. Such nuances will be useful if you choose a car from several models with similar characteristics, but different wheel diameters. Here it is worth considering the features of the planned application. For example, for urban and "road" driving — on a hard surface without any special irregularities and elevation changes — it is better to choose larger wheels, and for dirt roads with ups and downs — smaller ones.

Also note that tyres are replaceable, and many bikes allow the installation of tyres of...a “non-native” size — for example, 29 "on a model with 28-inch wheels. It is also worth considering that wheels (tyres) of the same size may differ in inner (landing) diameter These nuances are described in detail in special sources.

Tyre

Tyre model supplied with the bike as standard. Different tyres have different purposes and characteristics; knowing the tyre model, you can clarify these points and check how they correspond to your wishes. This is especially important when choosing a machine for serious cycling.

Freewheel/cassette model

Model of a cassette — a system of rear wheel gears — mounted on a bicycle. Cassettes of different models differ in characteristics and can belong to different classes — from entry-level to professional. Knowing the cassette model, you can get acquainted with its features in more detail (according to official documentation, reviews, user reviews, etc.). This is especially important when choosing a bike for professional cycling.
Formula Thor 1.0 DD 27.5 2019 often compared
Ardis Infinity AMT 26 often compared