Dark mode
United Kingdom
Catalog   /   Computing   /   Multimedia   /   PC Speakers

Comparison Microlab M-106 vs Microlab M-111

Add to comparison
Microlab M-106
Microlab M-111
Microlab M-106Microlab M-111
from $29.24 up to $33.32
Outdated Product
from $37.56 up to $39.96
Outdated Product
TOP sellers
Speakerskit 2.1kit 2.1
Lines11
Specs
Signal-to-noise ratio75 dB75 dB
Frequency range35 – 20000 Hz35 – 20000 Hz
Impedance8 Ohm4 Ohm
Speaker output10 W12 W
Front2.5 W/channel3 W/channel
Subwoofer5 W6 W
Speaker port tube
Features
Connections
mini-Jack (3.5 mm)
 
mini-Jack (3.5 mm)
headphone output
General
Detachable cablesoundsound
Remote controlwired
Volume controlfronton the remote control
Inclined design
Speaker materialMDFplastic
Subwoofer materialMDFMDF
Front speaker size (WxHxD)87x134x97 mm85x165x75 mm
Subwoofer size150x205x210 mm150x215x210 mm
Weight2.2 kg3.1 kg
Color
Added to E-Catalogmarch 2016december 2010

Impedance

The electrical resistance of the speakers to alternating current. This parameter is important primarily for normal compatibility with the amplifier: too low speaker impedance can lead to distortion, overload, and even damage to the speakers, and too high impedance can reduce the sound volume. At the same time, the vast majority of modern computer acoustics have their own amplifiers and are connected via a line input. Therefore, the impedance data is more of a reference value; in fact, this indicator may be needed only when connecting speakers to a “non-native” power amplifier, bypassing the standard one.

Speaker output

Total speaker power rating — the sum of the power ratings of all components (front, rear, centre, etc.)

Rated usually means the highest average sound power that the speakers can produce without overloading and damage. Individual peaks of sound can significantly exceed this figure, but it is the average value that is key — in particular, it is it that determines the overall loudness of the acoustics. However it should be borne in mind here that in sets with a subwoofer, the latter can account for about half of the total power of the entire system, while the actual volume is determined mainly by the main speakers. In fact, this means that with equal total power, acoustics with a subwoofer can sound noticeably quieter than a model without a subwoofer: for example, a 2.0 system at 20 W will have 10 W per main channel, while in a 2.1 model at 20 W with 10- watt subwoofer on the main speakers will have only 5 watts.

As for specific values, in the quietest modern PC speakers, the power does not exceed 10 watts. An indicator of 10 – 25 W can be called relatively modest, 25 – 50 W — average, and values of 50 – 100 W and above are found mainly in sets with subwoofers, where a significant part of the power falls on the bass speaker (although there are also ordinary stereo speakers with similar features)....

Theoretically, the power of acoustics also affects its compatibility with a specific amplifier: speakers should not be inferior to it in terms of rated power, otherwise sound distortion and even equipment damage are possible. However, computer acoustics in the vast majority of cases are used with their own amplifiers, optimally matched to the speakers installed in the speakers. So this moment becomes relevant only in some very specific cases — for example, when replacing a complete external amplifier (see below) with another one.

Front

The power rating of each individual front speaker provided in the speaker system. This parameter can be specified for a system with any number of speakers (see above) — all sound formats used in computer acoustics provide a pair of front speakers.

In the most general terms, the higher the power, the louder the speaker is capable of sounding. For more information about this parameter, see "Total power" above. Also note here that for stereo systems without a subwoofer, the power of one front channel is half of the total power; in more advanced acoustics, the power ratio between the channels may be different.

Subwoofer

Rated power of the complete subwoofer of the acoustic system.

Recall that a subwoofer is a specialized speaker for low and ultra-low frequencies; such a speaker is especially useful for games and movies, it is for such content that well-defined bass is most important. Accordingly, the saturation and (to a certain extent) the overall sound quality of low frequencies depends on the power of such a speaker. "Subs" are usually matched to the power of the rest of the system components, however, sets with a similar total power of the main channels may still differ in the characteristics of the subwoofers.

It is also worth noting that the power of this component can be a very significant part of the total power of all acoustics: in some models, about half of the “total watts” (or even more) falls on the subwoofer. This should be taken into account when comparing; see "Total power" for more details.

Connections

mini-Jack (3.5 mm). The 3.5 mm jack is used as a standard analogue audio output in almost all modern PCs and laptops; in addition, it is installed in most smartphones, tablets and pocket players, and in many other types of technology is very common. Thus, most modern computer speakers are equipped with a mini-jack plug (with the exception of Bluetooth models). This can be a plug on a non-detachable or detachable cable, or an adapter from another connector — for example, “2 RCA — mini-jack”.

— RCA. RCA connector, also colloquially known as a "tulip", in this case is used as a line input, for receiving an analogue audio signal — similar to the same 3.5 mm mini-jack. The differences lie in several important points. First, RCA works on the principle of "one connector per channel", and the number of such connectors will depend on the audio format. For example, stereo acoustics will need a set of two such connectors, a 5.1 system will need six, etc. Secondly, RCA is quite popular in traditional audio equipment, but it is rather uncommon among computers. Therefore, this input is relatively rare in computer acoustics — mainly in fairly advanced models (including solutions with an external amplifier). In addition, we note that in sets with a subwoofer for connecting a “sub” in the main satellite, an RCA connector can also be provided, which in this case plays the role of an output.

Subwoofer output. The presence of a connector for connecting a subwoofer allows you to further saturate the sound of the system with low frequencies. Naturally, a subwoofer is purchased separately. And the output itself serves as an option and allows you to expand the acoustics as needed.

Headphone output. Headphone output located directly on the body of one of the speakers. Such a connector can be especially convenient when using headphones with a traditional desktop PC: connecting the “ears” to the speaker housing on the table can be much more convenient than pulling the wire to the system unit. Usually, the role of this output is played by a standard mini-Jack 3.5 mm jack — it is under it that most modern "ears" (both computer and general-purpose) are made.

Microphone input. An input for connecting an external microphone, located directly on the speaker cabinet. The meaning of this function is the same as that of the headphone output described above: it is often more convenient to connect a microphone to a speaker standing on a table than directly to the system unit. The speakers themselves with this feature, usually, have an additional plug connected to the microphone input of the sound card.

USB B. An interface that allows you to connect speakers to the USB port of a computer, laptop, etc. as an external peripheral. Such a connection can be useful, for example, in cases where the standard audio output is busy or located in a hard-to-reach place; in addition, it allows the speakers to work even if there is no sound card in the system (although this is very rare today). At the same time, speakers can also be powered via USB, which, with low power, makes it possible to do without a separate power source (for more details, see "Power from the USB port"). In addition, this connector may be responsible for additional functions — for example, controlling speaker functions from a PC through special software.

Optical input. Digital input for high quality sound transmission, including multichannel. Such a connection is remarkable for its complete insensitivity to electrical interference, however, the fibre optic cable does not tolerate bending and strong pressure.

Coaxial input. Digital audio input. Provides the possibility of transmitting multi-channel audio. Uses an RCA connector (colloquially referred to as a "tulip"), but is not compatible with the RCA interface described above. A coaxial connection, unlike an optical one, is subject to electromagnetic interference, but it does not require special delicacy in handling the cable.

Remote control

The type of remote control that the speakers are equipped with — of course, if such a remote control is provided at all.

Wired. The remote control is a separate device connected to the control component of the system (“main” speaker, subwoofer, external amplifier) using a separate wire. Such a remote control is not as mobile as a wireless one, and the wire itself can create some inconvenience. On the other hand, these shortcomings are not always really noticeable: computer speakers are most often located in close proximity to the listener, and he does not have a need for "long-range" control. At the same time, wired remotes are reliable, inexpensive, do not require batteries and work even without being in direct line of sight of the speakers (unlike wireless ones, which often use IR control). However note that only the most basic functions are usually carried out on such a remote control — such as adjusting the volume and tone.

— Wireless. Wireless remotes most often operate via an infrared channel — similar to remotes for TVs, air conditioners, etc. The main advantages of such control are freedom of movement within at least a few metres from the acoustics. In addition, wireless remotes are often given control over advanced settings. At the same time, there should be no obstacles between the remote control and the receiver (one of the speakers, subwo...ofer, etc.); and such accessories cost much more than wired remotes.

— Wired and wireless. Acoustic kits equipped with two remote controls at once — wired and wireless. The features of both options are described in detail above, and their combination allows you to choose the remote control depending on what is required at the moment — to have control at hand while sitting at the computer, or to adjust the sound from a distance of several metres, moving around the room. In addition, wired and wireless remotes may differ in terms of functionality. However, it is worth considering that such equipment significantly affects the cost.

Volume control

The location of the own volume control provided in the speakers. In modern computer speakers, there are regulators installed in the front, back, side, top, on the signal cable, on the amplifier and on the remote control (the latter can be either the only regulator or in addition to the regulator with a different location; see below for details). Here are the features of each option:

— Front. The most popular arrangement nowadays: the front panel of the speaker is the easiest to reach, the regulator can be twisted at any time without any problems, and even if the speakers are tightly surrounded by foreign objects from the back and sides, the front panel usually remains free. Of the shortcomings, one can only note the moment that not everyone likes the extra handles on the front panel of the speaker — however, this is a purely aesthetic nuance that does not affect convenience.

— Behind. The knob mounted on the rear panel of the speaker is not very convenient for frequent volume changes — you usually have to find it by touch, and some free space around the speaker is required to access it. So on such speakers it is most convenient to initially select a certain optimal sound level, and then, if necessary, adjust the volume through the computer's software settings and not reach out to the regul...ator once again. Therefore, this option is quite rare. On the other hand, such invisibility has its advantages: acoustics acquires the most accurate appearance, without unnecessary small elements on the outside.

— Sideways. A kind of compromise between the two options described above: the regulator is not as noticeable as the front one, and at the same time it is easier to get to it than the rear one. However there should be enough free space on the corresponding side of the speaker for this, but this drawback is not particularly critical. So the lateral arrangement is found, although less often than the anterior one, but noticeably more often than the posterior one.

— Above. Pretty specific option. In terms of general specifics, it is similar to the side arrangement described above, however, for a number of reasons it is extremely rare — in speakers of non-standard design, as well as in some sets in which the system control is located on the subwoofer (this component is often installed on the floor, and the top position of the regulator is the most convenient).

— On the signal cable. A regulator placed directly on the wire carrying the audio signal. It is used mainly in inexpensive compact speakers: it is easier and cheaper to install a regulator in this way than to build it into a case, and the dimensions of the case itself can be reduced due to the absence of “extra” parts inside.

— On the amplifier. Option for models with external amplifier (see above). It is the parameters of the amplifier that determine the volume of the sound, so it is more logical to place the volume control on it, and not on one of the speakers. Theoretically, the specific location of the regulator can be different; in fact, this knob (like other controls) is usually mounted on the front panel. Note that such equipment is often supplemented by a regulator on the remote control (see below) — the amplifier is not always conveniently located, for frequent adjustments it is more convenient to use the remote control.

— On the remote control. The controller mounted on the remote control — this can be either a wired or wireless accessory (see "Remote control"). Actually, the presence of a remote control is almost guaranteed to mean the presence of a volume control in it, exceptions are extremely rare; and if there are two such consoles (wired and wireless), then the regulators are often installed in both. Also note that volume control from the remote control can be supplemented by a knob located in any of the places described above (except for the signal cable).

Inclined design

The sloping design of the front face of the speaker allows you to place the speakers in the case at an angle. Thus, the sound from them does not spread horizontally, but slightly upwards. This favorably affects the use of speakers near the monitor, when the distance from the listener to the audio system is insignificant. We can say that the inclined design allows you to direct the signal directly into the human ear. However, in fact it is more of an aesthetic nature. Therefore, computer speakers of a high price segment, and, accordingly, quality are rarely made inclined and more often have a straight body.

Speaker material

A material used to finish speaker cabinets. It is believed that this parameter can significantly affect the characteristics of the sound; however, in fact, the sound quality is determined by so many other factors that against their background this influence is practically not noticeable. In addition, the shortcomings of various materials are easily compensated for by certain technical tricks. Thanks to this, for example, plastic, which was originally considered a low-cost material, is quite successfully used in premium acoustics. And the main advantage of wood ( MDF) is not so much practical properties as a characteristic appearance. Therefore, the main selection criterion for the material is how much you like the design of the columns.
Microlab M-106 often compared
Microlab M-111 often compared