United Kingdom
Catalog   /   Computing   /   Desktop PCs

Comparison Apple iMac 27" 5K 2019 MRR02 vs Apple iMac 27" 5K 2017 MNED2

Add to comparison
Apple iMac 27" 5K 2019 (MRR02)
Apple iMac 27" 5K 2017 (MNED2)
Apple iMac 27" 5K 2019 MRR02Apple iMac 27" 5K 2017 MNED2
from £649.99 
Outdated Product
from £2,499.99 
Outdated Product
TOP sellers
Product typemonoblockmonoblock
Screen
Screen size27 "27 "
Resolution
5120x2880 (16:9) px /Retina 5K/
5120x2880 (16:9) px /Retina 5K/
Panel typeIPSIPS
Surface treatmentglossgloss
Brightness500 cd/m2500 cd/m2
CPU
Typedesktopdesktop
SeriesCore i5Core i5
Model86007600K
Cores64
Threads64
Speed3.1 GHz3.8 GHz
TurboBoost / TurboCore4.3 GHz4.2 GHz
L2 cache1536 KB1024 KB
L3 cache9 MB6 MB
Passmark CPU Mark10012 score(s)6810 score(s)
Geekbench 420315 score(s)23389 score(s)
Cinebench R15959 score(s)656 score(s)
Memory
RAM8 GB8 GB
Memory typeDDR4DDR4
Speed2666 MHz2400 MHz
Number of slots44
Graphics card
Graphics card typededicateddedicated
Graphics card modelRadeon Pro 575XRadeon Pro 580
Graphics memory4 GB8 GB
Memory typeGDDR5GDDR5
Passmark G3D Mark7753 score(s)
Storage
Drive typeHDD+Fusion DriveHDD+Fusion Drive
Drive capacity1000 GB2000 GB
Back panel
USB 3.2 gen144
USB C 3.2 gen222
Thunderboltv3 2 pcsv3 2 pcs
Front Panel
Optical driveis absentis absent
Card reader
 /SDXC/
 /SDXC/
Multimedia
LAN (RJ-45)1 Gbps1 Gbps
Wi-FiWi-Fi 5 (802.11aс)Wi-Fi 5 (802.11aс)
Bluetooth
 /v 4.2/
 /v 4.2/
Sound2.02.0
Speakers
Built-in microphone
Webcam
 /FaceTime HD camera/
 /FaceTime HD camera/
Kensington / Noble lock
General
Keyboard and mouse++
Preinstalled OS
MacOS /Mojave/
MacOS /Sierra/
Material
aluminium /anodized/
aluminium /anodized/
Dimensions (HxWxD)516x650x203 mm516x650x203 mm
Weight9.42 kg9.44 kg
Color
Added to E-Catalogmarch 2019june 2017

Model

The specific model of the processor installed in the PC, or rather, its index within its series (see "Processor"). The full model name consists of the series name and this index — for example, Intel Core i3 3220; knowing this name, you can find detailed information about the processor (characteristics, reviews, etc.) and determine how suitable it is for your purposes.

Cores

The number of cores in a complete PC processor.

The core is a part of the processor designed to process one stream of commands (and sometimes more, for such cases, see "Number of threads"). Accordingly, the presence of several cores allows the processor to work simultaneously with several such threads, which has a positive effect on performance. However note that a larger number of cores does not always mean higher computing power — a lot depends on how the interaction between command streams is organized, what special technologies are implemented in the processor, etc. So, only chips of the same purpose (desktop, mobile) and similar series (see "Processor") can be compared by the number of cores.

In general, single-core processors are practically not found in modern PCs. Mainly desktop chips of the initial and middle level are made dual-core. Four cores are found both in desktop CPUs of the middle and advanced class, and in mobile solutions. And six-core and eight-core processors are typical for high-performance desktop processors used in workstations and gaming systems.

Threads

The number of threads supported by the bundled PC processor.

A thread in this case is a sequence of instructions executed by the kernel. Initially, each individual core is able to work with only one such sequence. However, among modern CPUs, more and more often there are models in which the number of threads is twice the number of cores. This means that the processor uses multi-threading technology, and each core works with two instruction sequences: when pauses occur in one thread, the core switches to another, and vice versa. This allows you to significantly increase performance without increasing the clock frequency and heat dissipation, however, such CPUs are also more expensive than single-threaded counterparts.

Speed

Clock speed of the CPU installed in the PC.

In theory, higher clock speeds have a positive effect on performance because they allow the CPU to perform more operations per unit of time. However, this indicator is rather weakly related to real productivity. The fact is that the actual capabilities of the CPU strongly depend on a number of other factors - the overall architecture, cache size, number of cores, support for special instructions, etc. As a result, you can compare by this indicator only chips from the same or similar series (see “CPU”), and ideally, also from the same generation. And that's pretty approximate.

TurboBoost / TurboCore

Processor clock speed when running in TurboBoost or TurboCore mode.

Turbo Boost technology is used in Intel processors, Turbo Core — AMD. The essence of this technology is the same both there and there: if some of the cores work under high load, and some are idle, then some tasks are transferred from more loaded cores to less loaded ones, which improves performance. This usually increases the clock frequency of the processor; this value is indicated in this paragraph. See above for more information on clock speed in general.

L2 cache

The amount of cache memory level 2 (L2) in the complete PC processor.

The cache is an intermediate memory buffer into which the most frequently used data from the "RAM" is written during the operation of the processor. This has a positive effect on system performance. The larger the cache, the more data can be stored in it for quick access and the higher the performance (ceteris paribus). As for the level, the higher it is, the larger and slower the cache. Thus, the L2 cache occupies an intermediate position between the small and fast L1 cache and the large but relatively slow L3 cache. The minimum size of this buffer in modern PC processors is 512 KB, in most models this figure does not exceed 8 MB, however, there are chips with an L2 cache of 16 MB or even more.

L3 cache

The amount of cache memory level 3 (L3) in the complete PC processor.

The cache is an intermediate memory buffer into which, when the processor is running, the most frequently used data from the "RAM" is written. This has a positive effect on system performance. The larger the cache, the more data can be stored in it for quick access and the higher the performance (ceteris paribus). As for the level, the higher it is, the larger and slower the cache. The third cache level is the highest, respectively, the most voluminous and the slowest. Its minimum volume in modern PCs is about 2 MB, and the most advanced processors can have 20 – 30 MB of L3 cache.

Passmark CPU Mark

The result shown by the PC processor in the test (benchmark) Passmark CPU Mark.

Passmark CPU Mark is a comprehensive test that allows you to evaluate CPU performance in various modes and with a different number of processed threads. The results are displayed in points; the more points, the higher the overall performance of the processor. For comparison: as of 2020, in low-cost solutions, the results are measured in hundreds of points, in mid-range models they range from 800 – 900 to more than 6,000 points, and individual top-end chips are capable of showing 40,000 points or more.

Geekbench 4

The result shown by the PC processor in the test (benchmark) Geekbench 4.

Geekbench 4 is a comprehensive cross-platform test that allows, among other things, to determine the efficiency of the processor in various modes. At the same time, according to the developers, the verification modes are as close as possible to various real tasks that the processor has to solve. The result is indicated in points: the more points — the more powerful the CPU, while the difference in numbers corresponds to the actual difference in performance ("twice the result — twice the power").

Note that the benchmark in Geekbench 4 is the Intel Core i7-6600U processor with a clock frequency of 2.6 GHz. Its power is estimated at 4000 points, and the performance of other tested CPUs is already compared with it.
Apple iMac 27" 5K 2017 often compared