Dark mode
United Kingdom
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   UPS

Comparison Logicpower LPM-L825VA 825 VA vs Logicpower LP-850VA 850 VA

Add to comparison
Logicpower LPM-L825VA 825 VA
Logicpower LP-850VA 850 VA
Logicpower LPM-L825VA 825 VALogicpower LP-850VA 850 VA
from $58.00 up to $66.40
Outdated Product
from $62.76 up to $74.12
Outdated Product
User reviews
0
0
1
0
TOP sellers
Typesmartsmart
Form factorstandard (Tower)standard (Tower)
Switching to battery6 ms6 ms
Input
Input voltage1 phase (230V)1 phase (230V)
Input voltage range145-290 V165-275 V
Max. current4 А
Bypass (direct connection)is absentis absent
Output
Output voltage1 phase (230V)1 phase (230V)
Peak output power825 VA850 VA
Rated output power577 W510 W
Output voltage accuracy10 %
Output waveformsimilar to a sinusoid (approximated)similar to a sinusoid (approximated)
Output frequency50-60 Hz50-60 Hz
Redundant sockets22
Socket typetype F (Schuko)type F (Schuko)
Battery
Total battery capacity9 Ah8.5 Ah
Number of batteries11
Full charge time480 min
Cold start
Protection
Protection
short circuit protection
overload protection
noise filtering
sound alarm
short circuit protection
overload protection
noise filtering
sound alarm
Fusemeltingmelting
Surge protection220 J
General
Screen
Operating temperature0 – 40 °C0 – 40 °C
Dimensions (HxWxD)153x100x324 mm160х95х330 mm
Weight5.6 kg6.93 kg
Added to E-Catalogjanuary 2017april 2012

Input voltage range

In this case, the input voltage range is implied, in which the UPS is able to supply a stable voltage to the load only due to its own regulators, without switching to the battery. For redundant UPSs (see "Type") this range is quite small, approximately 190 to 260 V; for interactive and especially inverter ones, it is much wider. Some UPS models allow you to manually set the input voltage range.

Max. current

The maximum current drawn by the UPS. In fact, the current reaches its maximum value only when the UPS is operating from the mains with maximum load power and a completely discharged battery. However, when calculating the load on the power grid, this parameter should be taken into account.

Peak output power

The maximum output power supplied by the UPS, in other words, the highest apparent load power allowed for this model.

This indicator is measured in volt-amperes (the general meaning of this unit is the same as that of the watt, and different names are used to separate different types of power). The total power consumption of the load, implied in this case, is the sum of two powers — active and reactive. Active power is actually effective power (it is indicated in watts in the characteristics of electrical appliances). Reactive power is the power wasted by coils and capacitors in AC devices; with numerous coils and/or capacitors, this power can be a fairly significant part of the total energy consumption. Note that for simple tasks, you can use data on effective power (it is often given for UPS — see below); but for accurate electrical calculations it is worth using the full one.

The simplest selection rule for this indicator is: the maximum output power of the UPS in volt-amperes should be at least 1.7 times higher than the total load power in watts. There are also more detailed calculation formulas that take into account the characteristics of different types of load; they can be found in special sources. As for specific values, the most modest modern UPSs give out 700 – 1000 VA, or even less — this is enough to power a PC of average performance; and in the most "heavyweight" models, th...is figure can be 8 – 10 kVA and higher.

Rated output power

The effective output power of the UPS is, in fact, the maximum active power of the load that can be connected to the device.

Active power is consumed directly for the operation of the device; it is expressed in watts. In addition to it, most AC devices also consume reactive power, which is "wasted" (relatively speaking) is spent by coils and capacitors. Apparent power (denoted in volt-amperes) is precisely the sum of active and reactive power; it is this characteristic that should be used in accurate electrical calculations. See "Maximum output power" for details; here we note that when selecting a UPS for a relatively simple application, it is quite possible to use only effective power. This is at least easier than converting the watts claimed in the characteristics of the connected devices into full power volt-amps.

The most modest modern "uninterruptibles" give out less than 500 watts. 501 – 1000 W can be considered an average value, 1.1 – 2 kW is above average, and in the most powerful models this figure exceeds 2 kW and can reach very impressive values (up to 1000 kW or more in some industrial class UPS).

Output voltage accuracy

This parameter characterizes the degree of difference between the AC voltage at the output of the UPS and the perfect voltage, the graph of which has the shape of a regular sinusoid. The perfect voltage is so named because it is the most uniform and creates the least unnecessary load on the connected devices. Thus, the distortion of the output voltage is one of the most important parameters that determine the quality of the power received by the load. A distortion level of 0% means that the UPS produces a perfect sine wave, up to 5% — slight sine wave distortion, up to 18% — strong distortion, from 18% to 40% — a trapezoidal signal, more than 40% — a square wave.

Total battery capacity

The capacity of the battery installed in the UPS. For models with multiple batteries, this is both the total working capacity and the capacity of each individual battery: the batteries in such devices are usually connected in series, so that their total capacity corresponds to the capacity of each individual cell.

Theoretically, a higher battery capacity means the ability to power loads of a given capacity for longer. However, in fact, this parameter is more of a reference than practically significant. The fact is that the actual amount of energy stored by the battery depends not only on the capacity in amp-hours, but also on the voltage in volts; this voltage is often not specified in the characteristics, despite the fact that for accurate calculations it must be known. So when choosing, you should focus on more "close to life" characteristics — first of all, on the directly claimed operating time in different modes (see above).

Full charge time

The time it takes to fully charge the UPS battery. Note that in this case, this time is calculated according to special rules: not from 0 to 100% of the charge, but from a state in which it is impossible to maintain half the load, up to 90% of the charge. Of course, a full charge will take a little longer. However, this data is closer to practice than the “from 0 to 100%” calculation: the inability to work at half load makes the UPS practically useless, and this condition can be taken as zero, and 90% of the battery is already able to provide a good guarantee in case of a power failure.

Surge protection

The maximum energy of an electrical impulse in the mains that the UPS is able to compensate. Short pulses with high energy from time to time can occur in almost all networks — for example, due to interference from powerful radiation sources or due to poor-quality operation of lightning protection on power lines; for unprotected devices, such fluctuations can be very harmful. The greater the amount of absorbed energy, the higher, respectively, the level of impulse protectionprovided by the UPS.

Screen

The presence of the UPS own display makes management more convenient. Various operating characteristics can be displayed on the external screen: mains voltage and frequency, operating mode, load level, battery charge, bypass status, etc.
Logicpower LPM-L825VA often compared
Logicpower LP-850VA often compared