United Kingdom
Catalog   /   Computing   /   Components   /   Motherboards

Comparison ASRock B450M Steel Legend vs Asus TUF B450M-PRO GAMING

Add to comparison
ASRock B450M Steel Legend
Asus TUF B450M-PRO GAMING
ASRock B450M Steel LegendAsus TUF B450M-PRO GAMING
Compare prices 2
from £154.34 
Expecting restock
TOP sellers
Main
PCI-E 16x with metal sheathing. 2 M.2 slots. USB-C. Lighting sync. Low heat without overclocking. XMP.
Featuresgaming for overclockinggaming for overclocking
SocketAMD AM4AMD AM4
Form factormicro-ATXmicro-ATX
Power phases610
VRM heatsink
LED lighting
Lighting syncASRock Polychrome SyncAsus Aura Sync
Size (HxW)244x244 mm244x244 mm
Chipset
ChipsetAMD B450AMD B450
BIOSAmiAmi
UEFI BIOS
RAM
DDR44 slot(s)4 slot(s)
Memory moduleDIMMDIMM
Operation mode2 channel2 channel
Max. clock frequency3533 MHz3533 MHz
Max. memory64 GB64 GB
XMP
ECC
Drive interface
SATA 3 (6Gbps)46
M.2 connector22
M.21xSATA, 1xPCI-E 4x1xSATA/PCI-E 4x, 1xSATA/PCI-E 2x
Integrated RAID controller
 /RAID 0, RAID 1, RAID 10/
 /Raid 0, 1, 10/
Expansion slots
1x PCI-E slots
/2.0/
1
PCI-E 16x slots
/1x2.0, 1x3.0/
2
PCI Modes16x/4x16x/4x
PCI Express3.03.0
CrossFire (AMD)
Steel PCI-E connectors
Internal connections
USB 2.022
USB 3.2 gen111
Video outputs
DVI outputDVI-D
HDMI output
DisplayPort
DisplayPort versionv.1.2
Integrated audio
AudiochipRealtek ALC892Realtek ALC S1200A
Sound (channels)7.17.1
Optical S/P-DIF
Network interfaces
LAN (RJ-45)1 Gbps1 Gbps
LAN ports11
LAN controllerRealtek RTL8111HRealtek RTL8111H
External connections
USB 2.022
USB 3.2 gen142
USB 3.2 gen211
USB C 3.2 gen211
PS/211
Power connectors
Main power socket24 pin24 pin
CPU power8 pin8 pin
Fan power connectors53
Added to E-Catalogjanuary 2019november 2018

Power phases

The number of processor power phases provided on the motherboard.

Very simplistically, phases can be described as electronic blocks of a special design, through which power is supplied to the processor. The task of such blocks is to optimize this power, in particular, to minimize power surges when the load on the processor changes. In general, the more phases, the lower the load on each of them, the more stable the power supply and the more durable the electronics of the board. And the more powerful the CPU and the more cores it has, the more phases it needs; this number increases even more if the processor is planned to be overclocked. For example, for a conventional quad-core chip, only four phases are often enough, and for an overclocked one, at least eight may be needed. It is because of this that powerful processors can have problems when used on inexpensive low-phase motherboards.

Detailed recommendations on choosing the number of phases for specific CPU series and models can be found in special sources (including the documentation for CPU itself). Here we note that with numerous phases on the motherboard (more than 8), some of them can be virtual. To do this, real electronic blocks are supplemented with doublers or even triplers, which, formally, increases the number of phases: for example, 12 claimed phases can represent 6 physical blocks with doublers. However, virtual phases are much inferior to real ones in terms of capabilities — in fact, t...hey are just additions that slightly improve the characteristics of real phases. So, let's say, in our example, it is more correct to speak not about twelve, but only about six (though improved) phases. These nuances must be specified when choosing a motherboard.

Lighting sync

Synchronization technology provided in the board with LED backlight (see above).

Synchronization itself allows you to "match" the backlight of the motherboard with the backlight of other system components — cases, video cards, keyboards, mice, etc. Thanks to this matching, all components can change colour synchronously, turn on / off at the same time, etc. Specific features the operation of such backlighting depends on the synchronization technology used, and, usually, each manufacturer has its own (Mystic Light Sync for MSI, RGB Fusion for Gigabyte, etc.). The compatibility of the components also depends on this: they must all support the same technology. So the easiest way to achieve backlight compatibility is to collect components from the same manufacturer.

XMP

The ability of the motherboard to work with RAM modules that support XMP (Extreme Memory Profiles) technology. This technology was developed by Intel; it is used in motherboards and RAM blocks and only works if both of these system components are XMP compliant. A similar technology from AMD is called AMP.

The main function of XMP is to facilitate system overclocking (“overclocking”): special overclocking profiles are “sewn” into the memory with this technology, and if desired, the user can only select one of these profiles without resorting to complex configuration procedures. This is not only easier, but also safer: every profile added to the bar is tested for stability.

ECC

The ability of the motherboard to work with memory modules that support ECC (Error Checking and Correction) technology. This technology allows you to correct minor errors that occur in the process of working with data, and increases the overall reliability of the system; mainly used in servers.

SATA 3 (6Gbps)

Number of SATA 3 ports on the motherboard.

SATA is now the standard interface for connecting internal drives (mainly HDDs) and optical drives. One device is connected to one such connector, so the number of SATA ports corresponds to the number of internal drives / drives that can be connected to the motherboard through such an interface. A large number ( 6 SATA ports and more) is necessary in case of active use of several hard drives and other peripherals. For domestic use, 4 is enough. SATA 3, as the name suggests, is the third version of this interface, operating at a total speed of about 6 Gbps; the useful speed, taking into account the redundancy of the transmitted data, is about 4.8 Mbps (600 MB / s) — that is, twice as much as in SATA 2.

Note that different SATA standards are quite compatible with each other in both directions: older drives can be connected to newer ports, and vice versa. The only thing is that the data transfer rate will be limited by the capabilities of the slower version, and in some cases it may be necessary to reconfigure the drives with hardware (switches, jumpers) or software. It is also worth saying that SATA 3 is the newest and most advanced variation of SATA today, but the capabilities of this standard are not enough to unlock the full potential of high-speed SSDs. Therefore, SATA 3 is mainly used for hard drives and low-cost SSDs, faster drives are conn...ected to specially designed connectors like M.2 or U.2 (see below).

M.2

Electrical (logical) interfaces implemented through physical M.2 connectors on the motherboard.

See above for more details on such connectors. Here we note that they can work with two types of interfaces:
  • SATA is a standard originally created for hard drives. M.2 usually supports the newest version, SATA 3; however, even it is noticeably inferior to PCI-E in terms of speed (600 MB / s) and functionality (only drives);
  • PCI-E is the most common modern interface for connecting internal peripherals (otherwise NVMe). Suitable for both expansion cards (such as wireless adapters) and drives, while PCI-E speeds allow you to fully realize the potential of modern SSDs. The maximum communication speed depends on the version of this interface and on the number of lines. In modern M.2 connectors, you can find PCI-E versions 3.0 and 4.0, with speeds of about 1 GB / s and 2 GB / s per lane, respectively; and the number of lanes can be 1, 2 or 4 (PCI-E 1x, 2x and 4x respectively)
Specifically, the M.2 interface in the characteristics of motherboards is indicated by the number of connectors themselves and by the type of interfaces provided for in each of them. For example, the entry "3xSATA / PCI-E 4x" means three connectors that can work both in SATA format and in PCI-E 4x format; and the designation "1xSATA / PCI-E 4x, 1xPCI-E 2x" means two connectors, one of which works as SATA or PCI-E 4x, and the second — only as PCI-E 2x.

DVI output

The motherboard has its own DVI output; this clause also specifies the specific form of this interface.

Such an output is intended for transmitting video from an integrated graphics card (see above) or a processor with integrated graphics (we emphasize that it is impossible to output a signal from a discrete graphics card through the motherboard chipset). As for DVI specifically, this is a standard originally created for digital video devices, however, it also allows an analogue signal format, depending on the type. In modern computer technology, including motherboards, you can find two types of DVI:

— DVI-D. A standard that provides for the transmission of a signal only in digital form. Depending on the supported mode, the maximum resolution of such video can be 1920x1200 (single-link Single Link) or 2560x1600 (two-channel Dual Link); however, Single Link plugs can be connected to Dual Link ports, but not vice versa. Also note that such connectors are compatible with HDMI via adapters, while in some cases even sound transmission may be provided (although this function is not initially supported in DVI-D, and its availability should be specified separately).

— DVI-I. A standard that combines the DVI-D described above with analogue DVI-A and allows the signal to be output in both digital and analogue formats. DVI-A in its characteristics corresponds to VGA (see above): it supports resolutions up to 1280x1024...inclusive and allows you to connect VGA screens through a simple adapter.

DisplayPort

Availability of DisplayPort output on the motherboard.

Primarily, this digital connector is used to transmit video from the built-in video card or processor with integrated graphics to external screens. Moreover, through one DisplayPort interface it is possible to connect several displays in series in a “chain” (“daisy chain” format). Specific output capabilities vary by version (see below), but even the most modest DisplayPort specification (among modern options) allows 4K at 60 fps, 5K at 30 fps, and 8K with some limitations.

The DisplayPort interface is a standard for Apple monitors and is found in screens from other manufacturers.

DisplayPort version

The version of the DisplayPort interface (see above) installed on the motherboard.

— v.1.2. The oldest version in use today (2010). It was in it that 3D support first appeared, the ability to work with the miniDisplayPort connector, as well as the option of connecting several screens in series to one port (daisy chain). The maximum resolution fully supported by v.1.2 is 5K at 30 fps, with some limitations, 8K video is also supported. And the v.1.2a update, introduced in 2013, added compatibility with the FreeSync technology used in AMD graphics cards.

— v.1.3. An update to the DisplayPort standard released in 2014. Thanks to the increase in bandwidth, it was possible to provide full support for 8K video (at 30 fps), and in 4K and 5K standards, increase the maximum frame rate to 120 and 60 fps, respectively. Another key update was the Dual-mode function, which provides compatibility with HDMI and DVI interfaces through the simplest passive adapters.

— v.1.4. The most recent version of the widely used. The bandwidth has been further increased (almost doubled compared to v.1.2, which allowed, albeit with some limitations, to transmit 4K and 5K video at up to 240 fps and 8K at up to 144 fps. In addition, Support for a number of special features has been added, including HDR10, and the maximum number of simultaneously transmitted audio channels has increased to 32.
ASRock B450M Steel Legend often compared
Asus TUF B450M-PRO GAMING often compared