Dark mode
United Kingdom
Catalog   /   Computing   /   Components   /   Hard Drives

Comparison Toshiba MQ01ABDxxx 2.5" MQ01ABD050 500 GB vs Toshiba DT01ACAxxx DT01ACA050 500 GB

Add to comparison
Toshiba MQ01ABDxxx 2.5" MQ01ABD050 500 GB
Toshiba DT01ACAxxx DT01ACA050 500 GB
Toshiba MQ01ABDxxx 2.5" MQ01ABD050 500 GBToshiba DT01ACAxxx DT01ACA050 500 GB
Compare prices 6Compare prices 2
User reviews
11
0
0
TOP sellers
Placementbuilt-inbuilt-in
TypeHDDHDD
FeaturespCpC
Size500 GB500 GB
Form factor2.5 "3.5 "
ConnectionSATA3SATA3
Manufacturer's warranty3 years2 years
Technical specs
Cache memory8 MB32 MB
RPM5400 rpm7200 rpm
Data transfer rate300 MB/s
Plates11
Average search time12 ms
Operation power consumption1.85 W6.4 W
Standby power consumption0.18 W1 W
Shockproof400 G60 G
Reading noise level19 dB28 dB
Standby mode noise level17 dB26 dB
MTBF0.6 M h
MTBF300 K
Added to E-Catalogjanuary 2013january 2013

Form factor

The form factor in which the hard drive is made.

This indicator determines primarily the size of the device. But its more specific meaning depends on the execution (see the relevant paragraph). So, in the case of external drives, only the overall dimensions of the case depend on the form factor, and then quite approximately. But internal HDDs are installed in slots with a well-defined size and location of holes for fasteners; these holes are made specifically for one form factor or another. For desktop PCs, the standard form factor is 3.5", for laptops — 2.5" ; at the same time, there has been a recent trend in desktops towards miniaturization and the transition to 2.5-inch drives. Theoretically, there is an even smaller form factor — 1.8", but in fact it is used mainly among ultra-compact external HDDs.

Manufacturer's warranty

Manufacturer's warranty provided for this model.

In fact, this is the minimum service life promised by the manufacturer, subject to the rules of operation. Most often, the actual service life of the device is much longer than the guaranteed one.

Cache memory

The amount of internal hard drive memory. This memory is an intermediate link between the high-speed computer RAM and the relatively slow mechanics responsible for reading and writing information on disk platters. In particular, the buffer is used to store the most frequently requested data from the disk — thus, the access time to them is reduced.
Technically, the size of the buffer affects the speed of the hard drive — the larger the buffer, the faster the drive. However, this influence is rather insignificant, and at the level of human perception, a significant difference in performance is noticeable only when the buffer size of the two drives differs many times — for example, 8 MB and 64 MB.

RPM

For drives used in a PC (see "Intended use"), 5400 rpm(normal) and 7200 rpm(high) are considered standard speeds. There are also more specific options, including models with the ability to adjust the speed depending on the load. In server HDDs, in turn, higher speeds can be used — 10,000 rpm and even 15,000 rpm.

Data transfer rate

The speed of data transfer between the disk and client devices is determined by the type of drive, spindle speed, memory buffer size and connection connectors. The last parameter is the most important, since it is impossible to exceed the bandwidth of a particular interface.

Average search time

The time it takes for the hard disk mechanics to find random requested data to read. For each specific case, the search time is different, as it depends on the location of the data on the surface of the disk and the position of the read head, therefore, the average value is indicated in the characteristics of hard drives. The lower the average seek time, the faster the disk works, all other things being equal.

Operation power consumption

The amount of power consumed by the disk when reading and writing information. In fact, this is the peak power consumption, it is in these modes that the drive consumes the most energy.

HDD power consumption data is needed primarily to calculate the overall system power consumption and power supply requirements for the system. In addition, for laptops that are planned to be used often "in isolation from outlets", it is advisable to choose more economical drives.

Standby power consumption

The amount of power consumed by the disk "idle". In the on state, the disk platters rotate regardless of whether information is being written or read or not — maintaining this rotation takes the energy consumed while waiting.

The lower the power consumption while waiting, the more economical the disk is, the less energy it consumes. At the same time, we note that in fact this parameter is relevant mainly when choosing a drive for a laptop, when energy efficiency is crucial. For stationary PCs, “idle” power consumption does not play a special role, and when calculating the requirements for a power supply, it is necessary to take into account not this indicator, but the power consumption during operation (see above).

Shockproof

A parameter that determines the resistance of the hard drive to drops and shocks during operation (that is, in the on state). Shock resistance is measured in G — units of overload, 1 G corresponds to the usual force of gravity. The higher the G number, the more resistant the disc is to various kinds of concussions and the less likely it is to be damaged, say, in the event of a fall. This setting is especially important for external drives and drives used in laptops.
Toshiba MQ01ABDxxx 2.5" often compared
Toshiba DT01ACAxxx often compared