United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Pressure Tank Units

Comparison Optima QB-60 Mini vs Optima TPS-60 Mini

Add to comparison
Optima QB-60 Mini
Optima TPS-60 Mini
Optima QB-60 MiniOptima TPS-60 Mini
from $47.32
Outdated Product
from $46.20 up to $48.72
Outdated Product
TOP sellers
Suitable forclean waterclean water
Specs
Maximum performance
1800 L/h /maximum/
2000 L/h /maximum/
Maximum head
35 m /maximum/
35 m /maximum/
Max. pressure8 bar8 bar
Pump typecentrifugalcentrifugal
Suction height7 m7 m
Maximum particle size3 mm3 mm
Maximum liquid temperature50 °С40 °С
Dry run protection
Volume of water pressure tank2 L2 L
Suction systemsingle-stagesingle-stage
Outlet size1"1"
Inlet hole size1"1"
Engine
Maximum power370 W370 W
Power sourceelectricelectric
Mains voltage230 V230 V
Engine typeasynchronousasynchronous
Power cord length1.5 m1.5 m
General specs
Protection class (IP)4444
Country of originPolandPoland
Pump housing materialcast ironcast iron
Impeller / auger materialbronzeplastic
Water pressure tank materialsteelsteel
Added to E-Catalogdecember 2014december 2014

Maximum performance

The maximum volume of water that the device can pump in a certain amount of time. It is one of the key specs of any pump because characterizes the volume of water with which the device can work. At the same time, it does not always make sense to pursue maximum performance — after all, it significantly affects the dimensions and weight of the unit.

Some formulas allow you to derive optimal performance values for different situations. So, if the pump is designed to supply water to water intake points, its minimum required performance should not be lower than the highest total flow rate; if desired, a margin of 20-30% can be added to this value. And for sewer models (see "Suitable for"), everything will depend on the volume of wastewater. More detailed recommendations for choosing a pump depending on performance can be found in special sources.

Maximum liquid temperature

The highest temperature of water at which the pump is capable of operating normally. Usually, in most models this parameter is 35-40 °C — at high temperatures it is difficult to ensure effective cooling of the engine and moving parts, and in fact, such conditions are rare.

Dry run protection

A system that protects the unit from running without water.

The dry running mode is abnormal for any pump: at best, the mechanism of the unit in this mode experiences increased loads, and at worst, the device may fail and even a serious accident. This feature allows you to prevent such consequences. The specific method of protection against dry running may be different; one of the most popular options is a float switch (see below). However, in addition, flow sensors, pressure or level switches can be used. These details depend both on the general type of pump and on the specific model; they should be specified separately in each case.

Impeller / auger material

The material from which the main working element of the pump is made is an impeller, an auger or a membrane. This part is in direct contact with the pumped liquid, so its specs are key to the overall performance and capabilities of the pump.

— Plastic. Plastic is low-cost, and it is not subject to corrosion. It is believed that the mechanical strength of this material is generally low, and it does not tolerate contact with solid impurities. However, today there are many varieties of plastic — including special high-strength varieties that are suitable even for working with heavily polluted water or sewage. So plastic impellers/augers can be found in a variety of types of pumps; the overall quality and reliability of such parts, usually, depend on the price category of the unit.

— Cast iron. Solid, durable, reliable and, at the same time, relatively inexpensive material. In terms of corrosion resistance, cast iron is theoretically inferior to more advanced alloys like stainless steel or aluminium; however, subject to the operating rules, this point is not critical, and the service life of cast iron parts is no less than the total service life of the pump. The unequivocal disadvantages of this option include a large mass, which slightly increases the energy/fuel consumption during operation.

— Stainless steel. By the name, one of the key advantages of stainless steel is high resistance to corrosion — and, accordingly, reliability and durabili...ty. Such an alloy is somewhat more expensive than cast iron, but it also weighs less.

— Aluminium. Aluminium alloys combine strength, reliability, corrosion resistance and low weight. However, such materials are quite expensive — more expensive than the same stainless steel, not to mention cast iron.

— Brass. The varieties of brass used in pumps are distinguished by high strength and hardness, as well as insensitivity to moisture. Such materials are quite expensive, but this price is fully justified by the mentioned advantages. Therefore, in certain types of pumps — in particular, surface models and pressure tank units — brass impellers are very popular.

— Bronze. A material similar in many properties to the brass described above. However, bronze is used much less frequently — in particular, due to a slightly higher cost.

— Steel. Varieties of steel that are not related to stainless steel are used extremely rarely — in certain models of pumps for chemical liquids. At the same time, steel is usually used as a base in such parts, and a coating of fluoroplastic or other similar material is applied to it to protect it from corrosion.

— Silumin. Silumins are called aluminium alloys with the addition of silicon. For several reasons, such materials are rare in pumps, and mainly among relatively inexpensive models.

— Rubber. Material traditionally used for diaphragms in vibratory pumps (see “Pump type”).
Optima QB-60 Mini often compared
Optima TPS-60 Mini often compared