Dark mode
United Kingdom
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Acer Predator Z850 vs Acer Predator Z650

Add to comparison
Acer Predator Z850
Acer Predator Z650
Acer Predator Z850Acer Predator Z650
from $6,771.20
Outdated Product
from £1,760.99 
Outdated Product
TOP sellers
Main
Short focus optics. MHL and 3D support. Expanded list of communications. Powerful 10W speakers. DTS sound support. Wireless audio transmission. Carrying bag and two pairs of active 3D glasses included.
Main functiongaminggaming
Lamp and image
Lamp typeLaser-LEDUHP
Service life20000 h3000 h
Service life (energy-saving)30000 h6000 h
Lamp power240 W
Brightness3000 lm
Brightness ANSI Lumens2200 lm
Dynamic contrast100 000:120 000:1
Colour rendering1 billion colours1 billion colours
Horizontal frequency15 – 100 kHz15 – 100 kHz
Frame rate24 – 120 Hz24 – 120 Hz
Projection system
TechnologyDLPDLP
Real resolution1920x720 px1920x1080 px
Max. video resolution1920x1080 px1920x1200 px
Image format support16:9, 16:10, 4:316:9, 4:3
Colour enhancement
Projecting
Rear projection
Throw distance, min0.2 m0.9 m
Throw distance, max0.6 m4.6 m
Image size118 – 140 "54 – 300 "
Throw ratio0.25:10.69:1 – 0.76:1
Optical zoom1.1 x
Digital zoom2 x2 x
Zoom and focusmanualmanual
Auto keystone correction
Keystone correction (vert), ±5 °30 °
Keystone correction (horizontal), ±5 °30 °
Features
Features
MHL support
3D support
MHL support
3D support
Wi-FiWi-Fi readyWi-Fi ready
Hardware
USB 2.011
Number of speakers12
Sound power10 W20 W
Video connectors
VGA
S-Video
composite
 
VGA
S-Video
composite
component
HDMI inputs22
HDMI versionv 1.4v 1.4
Audio connectors
microphone input
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
RCA (audio)
 
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
 
Service connectors
COM port (RS-232)
USB (slave)
LAN (RJ-45)
COM port (RS-232)
USB (slave)
 
General
Noise level (nominal)33 dB33 dB
Noise level (energy-saving / quiet)29 dB30 dB
Power sourcemainsmains
Power consumption360 W424 W
Size (HxWxD)109x310x382 mm98x357x241 mm
Weight5.5 kg3.6 kg
Color
Added to E-Catalogmarch 2017may 2016

Lamp type

— HD (High-intensity discharge). General name for gas discharge lamps, i.e. lamps in which the light flow is created by an electrical discharge between the electrodes inside the bulb. In the case of projectors, such lamps can be mercury, metal-halide, and xenon (see above for more details).

LED. LEDs are used as a light source. They provide high brightness with low power consumption.

Laser-LED. Light source based on laser LEDs. It has even greater brightness than classic LED, with relatively low power consumption.

— UHP (Ultra-high performance) — a high-pressure mercury lamp, developed by Philips. Compared to other lamps, it consumes less power, while not inferior in brightness. Projectors on such lamps are smaller and lighter than conventional ones due to a smaller power supply, the cooler operates with a lower noise level. The creators claimed a service life of up to 10,000 hours. One of the most popular types of lamps for projectors today

– UHE (Ultra-High Energy). Variety of UHP lamps (see above).

— UHB (Ultra-high brightness). Another kind of UHP lamps (see above).

— NSH (New Super High Pressure). Also applies to high pressure mercury lamps manufactured by Ushio. Somewhat less popular than UHP and its peers, but also widespread. Estimated operating time is about...2000 hours.

— SHP. High pressure mercury lamps manufactured by Phoenix.

— P-VIP (Video Projector) — a high-pressure mercury lamp from OSRAM. High brightness lamps, service life — 4000 — 6000 hours.

—UHM (Ultra High Performance Lamp of Matsushita) is a high pressure mercury lamp manufactured by Panasonic. Сan be easily changed, operating time, depending on type — 2000 — 5000 hours.

— Xenon. The design and principle of operation of such lamps are similar to high-pressure mercury lamps — light is created due to a discharge in a gaseous medium. However, instead of mercury vapor, in this case, an inert xenon gas under high pressure is used. This allows to create high power lamps (from 2 kW) with the appropriate light flow. Xenon lamps are used primarily in professional models.

— HPM. High-pressure mercury lamp technology developed by Sony and used primarily in its projectors (although other brands are also available). Combines compact size and relatively low cost with high brightness.

— DC. Abbreviation for "direct current". In the case of projector lamps, this designation usually refers to mercury lamps powered by direct current. The operating voltage of such lamps in different models of projectors may be different. Their design usually uses various tricks to improve performance compared to conventional lamps of this type — in particular, increase service life and reduce power consumption without sacrificing brightness.

— AC. This abbreviation stands for "alternating current". Such lamps are similar in almost everything to the DC ones described above, differing from them only in the type of power supply.

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Service life (energy-saving)

When working in economy mode, the brightness of the backlight is noticeably reduced, on average by 30-50%. With a decrease in brightness, heat dissipation also decreases, which saves the working life of the illuminator, thereby increasing the lamp life. Thus, the ECO mode allows you to extend the lamp life by an average of 30%. If the typical projector lamp life is 4000 hours, regular use of the ECO mode will extend the backlight life to approximately 5500 hours.

Lamp power

The power consumption of the backlight lamp installed in the projector.

Theoretically, the more powerful the lamp, the brighter it is. However, this is only true when comparing lamps of the same type (see above); and even in this case, the brightness may also depend on the nuances of the design. Therefore, when evaluating the capabilities of a lamp, it is worth focus not so much on power, but on the directly claimed brightness in lumens (see below).

But what this parameter directly affects is the total power consumption of the projector: the lamp is the most “greedy” component of the device, compared to it, the power consumption of the rest of the electronics is very small. Also note that many powerful lamps have high heat dissipation and require cooling systems, which affects the size and weight of the projector.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Dynamic contrast

The dynamic image contrast provided by the projector.

Dynamic contrast ratio is the ratio between the brightest white and darkest black colour that a projector can produce. Recall that the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas. However, dynamic contrast is a rather specific parameter. The fact is that when it is calculated, the brightest white at the maximum brightness settings and the darkest black at the minimum are taken into account. As a result, the figures in this column can be very impressive, but it is impossible to achieve such a contrast within one frame.

By introducing this parameter, the manufacturers went to a certain trick. However, this is not to say that dynamic contrast has nothing to do with image quality at all. Projectors can use automatic brightness control, in which the overall brightness, depending on the "picture" on the screen, can increase or decrease. This format of work is based on the fact that the human eye does not need too bright areas on a general dark background and very dark areas on a bright one, the image is normally perceived even without it. The maximum brightness difference achievable in this mode of operation is exactly what described by dynamic contrast.

Real resolution

The native resolution of the image produced by the projector matrix.

The minimum for modern projectors is actually the VGA standard, which assumes a resolution of 800x600 or close to it. The most limited of modern high-definition standards is HD (720); the classic size of such a frame is 1280x720, but projectors also have other options (up to 1920x720). A more advanced HD format is Full HD (1080), which also has several variations (the most popular is 1920x1080). And among high-end projectors there are models of Quad HD, Ultra HD (4K) and even Ultra HD (8K) standards.

In general, the higher the resolution, the clearer and more detailed image the projector can produce. On the other hand, this indicator directly affects the cost, and all the benefits of high resolution can only be appreciated if the reproduced content also corresponds to it. Note that modern projectors can work with higher resolutions than the “native” ones – for more details, see “Maximum video resolution”.

Max. video resolution

The actual maximum frame resolution that the projector is capable of processing and displaying.

Many models allow project images at a higher resolution than the actual resolution of the projector matrix (see above). For example, a 1920x1080 video can be displayed on a device with a frame size of 1024x768. However, the quality of such an image will be noticeably lower than on a projector, which initially has a resolution of 1920x1080.

The maximum resolution is closely related to both the overall picture quality and the size of the projection screen. The higher the resolution, the sharper the image details become. Of course, the screen size itself should be taken into account. The fact is that on a 40-50″ projection surface there will not be much difference between the Quad HD and 4K formats. A high-resolution picture will be able to show itself on a truly large screen.
Acer Predator Z650 often compared