Dark mode
United Kingdom
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Acer V7850 vs Acer H7850

Add to comparison
Acer V7850
Acer H7850
Acer V7850Acer H7850
Outdated ProductOutdated Product
TOP sellers
Main
Support for HDR technology
Support for HDR technology
Main functionhomehome
Lamp and image
Lamp typeUHPUHP
Lamp modelMC.JPC11.002MC.JPC11.002
Service life4000 h4000 h
Service life (energy-saving)10000 h
Lamp power240 W240 W
Brightness3000 lm
Brightness ANSI Lumens2100 lm
Dynamic contrast1 200 000:11 000 000:1
Colour rendering1.07 billion colours1.07 billion colours
Horizontal frequency15 – 135 kHz15 – 135 kHz
Frame rate24 – 120 Hz24 – 120 Hz
Projection system
TechnologyDLPDLP
Size0.66"
Real resolution3840x2160 px3840x2160 px
Image format support16:9, 16:10, 4:316:9, 16:10, 4:3
HDR support
Resolution enhancement
Projecting
Rear projection
Throw distance, min1.3 m1.3 m
Throw distance, max9.3 m9.3 m
Image size26 – 302 "26 – 302 "
Throw ratio1.39:1 – 2.22:11.39:1 – 2.22:1
Optical zoom1.6 x1.6 x
Digital zoom2 x2 x
Zoom and focusmanualmanual
Lens shift
Keystone correction (vert), ±15 °
Features
Features
DLNA support
MHL support
DLNA support
MHL support
Wi-FiWi-Fi readyWi-Fi ready
Hardware
USB 2.011
Number of speakers22
Sound power10 W10 W
Video connectors
VGA
VGA
HDMI inputs22
HDMI versionv 2.0
Audio connectors
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
Service connectors
COM port (RS-232)
USB (slave)
LAN (RJ-45)
COM port (RS-232)
USB (slave)
LAN (RJ-45)
General
Noise level (nominal)29 dB29 dB
Noise level (energy-saving / quiet)27 dB26 dB
Power sourcemainsmains
Power consumption315 W315 W
Size (HxWxD)127x389x298 mm127x398x298 mm
Weight5.3 kg5.3 kg
Color
Added to E-Catalogfebruary 2018august 2017
Price comparison

Service life (energy-saving)

When working in economy mode, the brightness of the backlight is noticeably reduced, on average by 30-50%. With a decrease in brightness, heat dissipation also decreases, which saves the working life of the illuminator, thereby increasing the lamp life. Thus, the ECO mode allows you to extend the lamp life by an average of 30%. If the typical projector lamp life is 4000 hours, regular use of the ECO mode will extend the backlight life to approximately 5500 hours.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Dynamic contrast

The dynamic image contrast provided by the projector.

Dynamic contrast ratio is the ratio between the brightest white and darkest black colour that a projector can produce. Recall that the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas. However, dynamic contrast is a rather specific parameter. The fact is that when it is calculated, the brightest white at the maximum brightness settings and the darkest black at the minimum are taken into account. As a result, the figures in this column can be very impressive, but it is impossible to achieve such a contrast within one frame.

By introducing this parameter, the manufacturers went to a certain trick. However, this is not to say that dynamic contrast has nothing to do with image quality at all. Projectors can use automatic brightness control, in which the overall brightness, depending on the "picture" on the screen, can increase or decrease. This format of work is based on the fact that the human eye does not need too bright areas on a general dark background and very dark areas on a bright one, the image is normally perceived even without it. The maximum brightness difference achievable in this mode of operation is exactly what described by dynamic contrast.

Size

The size of the panel/chip affects the depth and final quality of the image. The larger the panel/chip, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Resolution enhancement

Resolution enhancement technology uses software algorithms to improve image quality. Resolution enhancement makes textures sharper. There are many ways to do this: noise reduction, contrast enhancement, colour correction, etc. Of course, you can not count on a significant result when improving the resolution in a software way, but it can provide a noticeable effect. Resolution enhancement can be very useful in cases where the projector displays the image on a large screen, capturing the largest possible diagonal.

Lens shift

The projector has a movable lens that can move at least vertically, and in the most advanced models — also horizontally. This feature allows you to adjust the location of the "picture" relative to the screen — most often it is about setting the image exactly in the centre. Using a moving lens for this is much easier than moving the projector or screen itself. Therefore, such models with lens shift can be very useful for those who are not sure that the installation location will optimally match the screen location.

Keystone correction (vert), ±

Vertical keystone correction allows you to align the image when the projection ray is shifted from the centre of the screen in a vertical plane. If the projector is suspended from the ceiling and shines from top to bottom, a vertical keystone occurs. And the function of vertical keystone correction allows you to align the picture.

In most cases, projectors can only correct vertical keystone. But the keystone can also be horizontal if the projection ray is offset from the centre of the screen in the horizontal plane. Advanced models are often equipped with an auto keystone correction feature (see the relevant paragraph). In this case, the keystone is aligned in a fully automatic mode, without user participation.

HDMI version

HDMI interface version supported by the projector.

About the interface itself, see above, and its different versions differ in maximum resolution and other features:

— v 1.4. The version released back in 2009. Despite this, it has quite decent specifications, due to which it continues to be used in modern video equipment. Specific features of HDMI v1.4 include 3D support, the ability to work with 4K video (4096x2160) at 24 fps and with Full HD at 120 fps. In addition to the original version, there are also improved modifications — v.1.4a and v.1.4b; they differ only in some 3D-related improvements.

– v 2.0. Standard introduced in 2014. Thanks to the increased bandwidth compared to v 1.4, it allows you to transfer 4K video at speeds up to 60 fps, as well as up to 32 channels and up to 4 audio streams simultaneously. In addition, this version was the first to introduce support for the 21:9 ultra-wide format, and the v2.0a update introduced HDR compatibility, with further enhancements to this feature in version 2.0b.

— v 2.1. A version released in 2017 also known as HDMI Ultra High Speed. The data transfer rate has indeed been significantly increased, allowing the support for video up to 10K at 120 frames per second. In addition, some improvements regarding HDR have been made. Note that connecting via HDMI v2.1 requires the use of special cables, although the basic features remain available when working with standard cables.
Acer H7850 often compared