United Kingdom
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison Acer H6810 vs Acer H6517ABD

Add to comparison
Acer H6810
Acer H6517ABD
Acer H6810Acer H6517ABD
Outdated Product
from £30.36 
Outdated Product
TOP sellers
Main
Support for HDR technology
Main functionhomehome
Lamp and image
Lamp typeUHPP-VIP
Lamp modelMC.JQE11.001MC.JN811.001
Service life4000 h5000 h
Service life (energy-saving)10000 h10000 h
Lamp power240 W195 W
Brightness ANSI Lumens3500 lm3200 lm
Dynamic contrast10 000:120 000:1
Colour rendering1 billion colors1 billion colors
Horizontal frequency15 – 135 kHz15 – 100 kHz
Frame rate24 – 120 Hz24 – 120 Hz
Sensor
TechnologyDLPDLP
Sensor size0.47"0.65"
Real resolution3840x2160 px1920x1080 px
Max. video resolution1920x1200 px
Image format support4:3, 16:9, 16:1016:9, 4:3
HDR support
Colour enhancement
 /ColorBoost/
Resolution enhancement
 /TI XPR/
Projecting
Rear projection
Throw distance, min1 m1.5 m
Throw distance, max9.75 m9.8 m
Image size0.66 – 7.62 m1.06 – 7.62 m
Throw ratio1.47:1 – 1.76:11.48:1 – 1.62:1
Optical zoom1.2 x1.1 x
Digital zoom2 x
Zoom and focusmanual
manual /f=2.5-2.67, f=21.86- 24 мм/
Keystone correction (vert), ±40 °40 °
Features
Features
 
3D support
Hardware
USB 2.01
Number of speakers11
Sound power10 W3 W
Video connectors
VGA
VGA
HDMI inputs21
HDMI versionv 2.0v 1.4
Audio connectors
3.5 mm input (mini-Jack)
3.5 mm output (mini-Jack)
3.5 mm input (mini-Jack)
 
Service connectors
COM port (RS-232)
USB (slave)
 
USB (slave)
General
Noise level (nominal)30 dB34 dB
Noise level (energy-saving / quiet)24 dB31 dB
Power sourcemainsmains
Power consumption
335 W /270 W in economy mode/
235 W /195W in economy mode/
Size (HxWxD)125x343x258 mm93x314x223 mm
Weight4 kg2.5 kg
Color
Added to E-Catalogseptember 2018september 2016

Lamp type

— HD (High-intensity discharge). General name for gas discharge lamps, i.e. lamps in which the light flow is created by an electrical discharge between the electrodes inside the bulb. In the case of projectors, such lamps can be mercury, metal-halide, and xenon (see above for more details).

LED. LEDs are used as a light source. They provide high brightness with low power consumption.

Laser-LED. Light source based on laser LEDs. It has even greater brightness than classic LED, with relatively low power consumption.

— UHP (Ultra-high performance) — a high-pressure mercury lamp, developed by Philips. Compared to other lamps, it consumes less power, while not inferior in brightness. Projectors on such lamps are smaller and lighter than conventional ones due to a smaller power supply, the cooler operates with a lower noise level. The creators claimed a service life of up to 10,000 hours. One of the most popular types of lamps for projectors today

– UHE (Ultra-High Energy). Variety of UHP lamps (see above).

— UHB (Ultra-high brightness). Another kind of UHP lamps (see above).

— NSH (New Super High Pressure). Also applies to high pressure mercury lamps manufactured by Ushio. Somewhat less popular than UHP and its peers, but also widespread. Estimated operating time is about...2000 hours.

— SHP. High pressure mercury lamps manufactured by Phoenix.

— P-VIP (Video Projector) — a high-pressure mercury lamp from OSRAM. High brightness lamps, service life — 4000 — 6000 hours.

—UHM (Ultra High Performance Lamp of Matsushita) is a high pressure mercury lamp manufactured by Panasonic. Сan be easily changed, operating time, depending on type — 2000 — 5000 hours.

— Xenon. The design and principle of operation of such lamps are similar to high-pressure mercury lamps — light is created due to a discharge in a gaseous medium. However, instead of mercury vapor, in this case, an inert xenon gas under high pressure is used. This allows to create high power lamps (from 2 kW) with the appropriate light flow. Xenon lamps are used primarily in professional models.

— HPM. High-pressure mercury lamp technology developed by Sony and used primarily in its projectors (although other brands are also available). Combines compact size and relatively low cost with high brightness.

— DC. Abbreviation for "direct current". In the case of projector lamps, this designation usually refers to mercury lamps powered by direct current. The operating voltage of such lamps in different models of projectors may be different. Their design usually uses various tricks to improve performance compared to conventional lamps of this type — in particular, increase service life and reduce power consumption without sacrificing brightness.

— AC. This abbreviation stands for "alternating current". Such lamps are similar in almost everything to the DC ones described above, differing from them only in the type of power supply.

Lamp model

The lamp model that the projector is designed for. Most projectors come with lamps included, so this information is not needed for normal use. But when looking for a spare lamp or replacement, information about model can be very useful: finding a spare part by the exact name is much easier than by general data like the brand of the projector.

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Lamp power

The power consumption of the backlight lamp installed in the projector.

Theoretically, the more powerful the lamp, the brighter it is. However, this is only true when comparing lamps of the same type (see above); and even in this case, the brightness may also depend on the nuances of the design. Therefore, when evaluating the capabilities of a lamp, it is worth focus not so much on power, but on the directly claimed brightness in lumens (see below).

But what this parameter directly affects is the total power consumption of the projector: the lamp is the most “greedy” component of the device, compared to it, the power consumption of the rest of the electronics is very small. Also note that many powerful lamps have high heat dissipation and require cooling systems, which affects the size and weight of the projector.

Brightness ANSI Lumens

This parameter largely determines the ability of the projector to work in a well-lit room. For a dark room, 1000 lumens is enough to make the projection picture bright, rich, clear and understandable. But when working in a lit room, the projector will need at least 3500-4000 lumens. Do not confuse ANSI lumens with Peak lumens. These are two different brightness standards. To convert one type of brightness to another, you need to multiply Peak lumens by 10-12. The result will be an approximate value of ANSI Lumens.

However, experts do not recommend chasing high ANSI lumen brightness values. There are many professional projectors with brightness up to 3500 lm. The lower the brightness, the lower the power consumption, and at the same time, the life of the illuminator increases. Of course, if the projector will be installed in a work office or classroom where good lighting is required, it is recommended to purchase a model with ANSI Lumens brightness of 4000 lumens and more.

Dynamic contrast

The dynamic image contrast provided by the projector.

Dynamic contrast ratio is the ratio between the brightest white and darkest black colour that a projector can produce. Recall that the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas. However, dynamic contrast is a rather specific parameter. The fact is that when it is calculated, the brightest white at the maximum brightness settings and the darkest black at the minimum are taken into account. As a result, the figures in this column can be very impressive, but it is impossible to achieve such a contrast within one frame.

By introducing this parameter, the manufacturers went to a certain trick. However, this is not to say that dynamic contrast has nothing to do with image quality at all. Projectors can use automatic brightness control, in which the overall brightness, depending on the "picture" on the screen, can increase or decrease. This format of work is based on the fact that the human eye does not need too bright areas on a general dark background and very dark areas on a bright one, the image is normally perceived even without it. The maximum brightness difference achievable in this mode of operation is exactly what described by dynamic contrast.

Horizontal frequency

Horizontal frequency supported by the projector.

This parameter is relevant when working with analogue video signal. In such a video, the image is formed line by line: each pixel in the line is highlighted in turn, then the next line is highlighted, and so on. The horizontal frequency describes how many times per second the backlight beam runs from edge to edge of the screen. For normal playback, the projector must support the same refresh rate as the input signal was recorded. However, most models support a fairly wide range of frequencies, and there are no problems with support. Also note that if you are not a professional, then when choosing a projector, it is quite possible to focus on the frame rate (see below) — this parameter is simpler and more intuitive, and support for a certain frame rate automatically means support for the corresponding line rate.

Sensor size

The size of the sensor affects the depth and final quality of the image. The larger the sensor, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Real resolution

The actual image resolution of the projector.

The minimum for modern projectors is actually the VGA standard, which assumes a resolution of 800x600 or close to it. The lowest of today's high-definition standards is HD (720) ; the classic size of such a frame is 1280x720, but there are other options in projectors, up to 1920x720. A more advanced HD format is Full HD (1080), which also has several variations (the most popular is 1920x1080). And among high-end projectors, there are models of Quad HD, Ultra HD (4K) and even Ultra HD (8K) standards.

In general, the higher the resolution, the clearer and more detailed image the projector can produce. On the other hand, this indicator directly affects the cost; and all the benefits of high resolution can only be appreciated if the content being played also corresponds to it.
Acer H6810 often compared
Acer H6517ABD often compared