Dark mode
United Kingdom
Catalog   /   TVs & Video   /   Projection Equipment   /   Projectors

Comparison XGIMI H2 vs LG PF1500

Add to comparison
XGIMI H2
LG PF1500
XGIMI H2LG PF1500
from £1,080.29 
Outdated Product
from $965.44 up to $1,052.00
Outdated Product
TOP sellers
Main
Harman/Kardon sound, HDR10 support. Colour gamut 120% NTSC. Developed smart functionality. Motorized AF drive. Extensive wireless connectivity. Automatic lens shutter.
The main differences from the H1 model are: increased brightness of 1350 lm instead of 900, glass optics instead of plastic in H1, automatic lens shutter. It also has HDR support.
Support for playing 3D content. Optical zoom. Multifunctional remote control Magic Remote. Compact dimensions.
The Magic Remote is not always included.
Main functionhomehome
Operating systemAndroid 6.0
Lamp and image
Lamp typeLEDLED
Service life30000 h
Brightness1350 lm1400 lm
Dynamic contrast10 000:1150 000:1
Colour rendering1.07 billion colours
Projection system
TechnologyDLPDLP
Size0.47"
Real resolution1920x1080 px1920x1080 px
Image format support16:9, 16:10, 4:316:9, 4:3
HDR support
Projecting
Throw distance, min1.22 m0.91 m
Throw distance, max9.14 m3.7 m
Image size40 – 300 "27 – 120 "
Throw ratio1.2:
Optical zoom1.1 x1.1 x
Zoom and focusmotorized (remote-controlled)manual
Autofocus
Auto keystone correction
Keystone correction (vert), ±45 °
Keystone correction (horizontal), ±45 °
Features
Features
DLNA support
MHL support
3D support
 
MHL support
3D support
Bluetoothv 4.0v 3.0
Wi-FiWi-Fi 5 (802.11ac)Wi-Fi 4 (802.11n)
Hardware
CPUMstar 6A838 Cortex-A53
RAM2 GB
Built-in memory16 GB
USB 2.022
Speaker systemHarman Kardon
Number of speakers22
Subwoofer
Sound power16 W6 W
Video connectors
 
 
VGA
component
HDMI inputs22
Audio connectors
3.5 mm output (mini-Jack)
optical
3.5 mm output (mini-Jack)
 
Service connectors
LAN (RJ-45)
LAN (RJ-45)
General
Noise level (nominal)30 dB30 dB
Power sourcemainsmains
Power consumption130 W90 W
Size (HxWxD)128x200x200 mm84x132x220 mm
Weight2.1 kg1.5 kg
Color
Added to E-Catalogjanuary 2019october 2015
Price comparison

Operating system

Smart TV (proprietary system). The operating system of the projector is represented by the proprietary software shell of the manufacturer. Usually such operating systems have an attractive and convenient menu, similar to a traditional Smart TV. A proprietary operating system is developed by the manufacturer for the hardware resources of a particular projector model or a whole line. But, as practice shows, compared to the classic Smart TV, the functionality of proprietary system often has significant limitations, and the system itself, in fact, is a stripped-down version of a full-fledged Smart TV.

Smart TV (Android AOSP). This type of operating system is a modification of the popular Android OS, mainly notable for being open source. It is a versatile operating system that gives the user much more freedom to create changes and customizations within the system. At the same time, the installation and work stability of certain applications on this platform are not guaranteed, and the overall system management was not specially “tailored” for large screens, which may cause some inconvenience. First of all, such solutions will will generate interest among users who understand the features of the Android OS, like to customize and control everything, and have time for this.

Android TV. This type of projector has full-fledged Android TV software, spec...ially adapted to work on large screens. In accordance with the name, it is a type of Android OS, specially designed for projectors/TVs, etc. In addition to the common features of all “Androids” (such as the ability to install additional applications, including even games), it has a number of special features: optimized interface, integration with smartphones (including the ability to use them as a remote control), voice search, etc. Thanks to this, TVs with this feature are significantly superior in functionality to models with a Smart TV. Of course, a dedicated processor, graphics subsystem and memory are provided for the operation of a multifunctional OS, and the presence of such hardware resources is reflected in the total cost of the projector. Given the same optical design, models with Android TV will cost more than classic projectors with a simple multi-line menu.

Service life

Minimum projector lamp life as stated by the manufacturer. Specified by the total time of continuous operation. Note that if the projector was operated without violations, then upon reaching this time, the lamp will not necessarily fail — on the contrary, it can work for quite a long time. However, when evaluating durability, it is best to focus on the claimed service life.

Brightness

The brightness of the image produced by the projector at maximum backlight brightness. Usually, the average brightness of the screen, derived from a special formula, is indicated. The higher it is, the less the image depends on ambient light: a bright projector can provide a clearly visible image even in daylight, but a dim one will require dimming. On the other hand, increasing brightness reduces contrast and accuracy of colour reproduction.

Accordingly, when choosing this parameter, you need to consider the conditions in which you plan to use the projector. So, for office or school/university use, a brightness of at least 3000 lm is desirable — this allows you to get normal visibility without obscuring the room. In turn, among the top models a very low brightness can be found, because. such projectors are usually installed in rooms specially designed for them with good darkness level. And in ultra-compact devices it is impossible to achieve high brightness for technical reasons.

Detailed recommendations on the optimal brightness for certain conditions can be found in special sources. Here we note that anyway, it is worth choosing according to this indicator with some margin. As mentioned above, as brightness increases, contrast and colour quality decrease, and you may need to use the projector at a reduced brightness to achieve the desired picture quality.

Dynamic contrast

The dynamic image contrast provided by the projector.

Dynamic contrast ratio is the ratio between the brightest white and darkest black colour that a projector can produce. Recall that the quality of colour reproduction and detailing depend on contrast, the higher this indicator, the lower the likelihood that details will be indistinguishable in bright or dark areas. However, dynamic contrast is a rather specific parameter. The fact is that when it is calculated, the brightest white at the maximum brightness settings and the darkest black at the minimum are taken into account. As a result, the figures in this column can be very impressive, but it is impossible to achieve such a contrast within one frame.

By introducing this parameter, the manufacturers went to a certain trick. However, this is not to say that dynamic contrast has nothing to do with image quality at all. Projectors can use automatic brightness control, in which the overall brightness, depending on the "picture" on the screen, can increase or decrease. This format of work is based on the fact that the human eye does not need too bright areas on a general dark background and very dark areas on a bright one, the image is normally perceived even without it. The maximum brightness difference achievable in this mode of operation is exactly what described by dynamic contrast.

Colour rendering

The number of individual colour shades that the projector is capable of displaying.

The minimum indicator for modern projection technology is actually 16 million colours (more precisely, 16.7 million is a standard number associated with the features of digital image processing). In the most advanced models, this value can exceed 1 billion. However, two nuances should be taken into account here: firstly, the human eye is able to recognize only about 10 million colour shades, and secondly, not a single modern image output device (projectors, monitors, etc.) cannot cover the entire spectrum of colours visible to the human eye. Therefore, impressive colour performance is more of a marketing ploy than a real indicator of image quality, and in fact it makes sense to pay attention to other characteristics — primarily brightness and contrast (see above), as well as specific data like a colour gamut chart.

Size

The size of the panel/chip affects the depth and final quality of the image. The larger the panel/chip, the more light it is able to process, which means the picture will be clearer and more structured. The average projector has a sensor of 0.5-0.7″, advanced projectors use sensors of 1.2-1.5″ and more.

Image format support

Image formats supported by the projector.

In this case, format means the aspect ratio of the image. The general rule in this case is that the projector must support the same format in which the original content is recorded. Otherwise, the image will either be stretched in height or width, or with black stripes on the sides or top-bottom. Specifically, the formats can be divided into three main categories:

— Traditional, or rectangular. Classic formats in which the height of the picture is not much less than the width. The most popular options are 4:3, widely used in analogue TV, and 5:4, common in computer technology. Traditional formats are well suited for presentations, working with documents and graphics, and other similar tasks.

Widescreen — formats in which the frame width is significantly (more than 1.5 times) greater than the height. The most popular of these standards are 16:9 and 16:10. These aspect ratios are well suited for games and movies; in particular, most high-definition content (HD 720p and above) is recorded in widescreen format.

Extra wide. The formats are even wider than the widescreen ones described above — for example, 21:9. Mainly used in cinematography.

It is worth noting that many modern projectors are able to work with several types of formats at once — for example, with classic 4:3 and...wide-angle 16:9.

HDR support

The projector supports HDR technology — high dynamic range.

This technology allows to expand the range of brightness displayed within a single frame — in other words, to display both very bright and very dark colours on the screen at the same time. Due to this, colour reproduction is noticeably improved; in addition, in very bright or very dark areas of the frame, small details remain visible that would not be visible in a normal image. At the same time, it is worth noting that all the benefits of HDR become noticeable only on a high-end screen with maximum dimming. In addition, this function significantly affects the cost of the projector, and the content must initially be recorded in HDR — and using exactly the technology that the projector supports (this point can be clarified in the instructions). Because of this HDR support is found predominantly among high-end home theater models (see "Main purpose").

Throw distance, min

The closest distance to the screen that the projector can be used on. Typically, this is the minimum distance at which the image from the projector remains in focus.

This parameter is especially important if the device is to be placed at a small distance from the screen (for example, in a cramped room). Some modern projectors are able to work normally at a distance of 10 – 20 cm. Also note that the throw distances are determined primarily by the lens, and if the initial range of these distances does not suit you, perhaps the situation can be solved by replacing the optics.
XGIMI H2 often compared
LG PF1500 often compared