Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Water Supply & Pumps   /   Water Heaters

Comparison Roda JSD20-A1 vs Bosch Therm 4000 O WR 10-2 P

Add to comparison
Roda JSD20-A1
Bosch Therm 4000 O WR 10-2 P
Roda JSD20-A1Bosch Therm 4000 O WR 10-2 P
from $103.96
Outdated Product
from $149.00 up to $232.64
Outdated Product
TOP sellers
Main
Compactness. Display. Traction control.
Typetanklesstankless
Energy sourcegasgas
Installationverticalvertical
Tank shaperectangularrectangular
Technical specs
Power sourceenergy independentenergy independent
Energy efficiency classA
Rated heat exchanger power20 kW17.4 kW
Max. water temperature60 °C
Performance (Δt ~25 °C)10 L/min10 L/min
Performance (Δt ~50 °C)5 L/min
Efficiency85 %
Water supplywith pressurewith pressure
Heating elements11
Heating element type
heat exchanger
heat exchanger
Ignition typebatteriespiezo ignition
Combustion chamber typeopen (atmospheric)open (atmospheric)
Flue diameter110 mm112 mm
Gas consumption2 m³/h2.1 m³/h
Features
Functions
thermostat
display
thermostat
 
Safety systems
overheat protection
gas control
 
overheat protection
gas control
draft sensor
General specs
Controlsmechanicalmechanical
Controls layoutfrontfront
Pipe connectionbottombottom
Dimensions (HxWxD)59х34х14 cm58х31х22 cm
Weight9 kg11 kg
Added to E-Catalogjanuary 2013august 2009

Energy efficiency class

This parameter characterizes the efficiency of electricity consumption by the water heater. Classes are indicated by latin letters from A to G (A, B, C, D), where A is the most energy efficient device.

Rated heat exchanger power

Rated power of the heat exchanger installed in the gas or indirect heater (see "Water heater type"), in other words, the amount of heat that can be transferred to the heated water through the heat exchanger.

This parameter is directly related to the performance of the water heater: high performance inevitably requires appropriate power. At the same time, the power of the heat exchanger is selected in such a way as to provide the necessary operating parameters (primarily performance and temperature). So when choosing a water heater, you should focus primarily on these parameters. Data on the power of the heat exchanger may be needed for some specific calculations — for example, assessing the compatibility of the heater with a boiler or solar collector: an external heat source must have no less thermal power than the heat exchanger, otherwise, it will be impossible to achieve the claimed performance.

It is also worth considering that the actual power of the heat exchanger depends on the temperature of the coolant flowing through it. In the characteristics of the water heater, usually, the power is given for the maximum allowable operating temperature; if the coolant is cooler, then the actual power will be lower.

Max. water temperature

The highest water temperature provided by the device. The standard temperature of hot water in the water supply is 60 °C, and this value is actually the minimum for modern water heaters: models with more modest rates (usually from 40 °C) are extremely rare. But higher values can be found much more often: for example, water heaters of 75 °C and 80 °C are very popular, and in the most powerful models in this regard, the temperature can reach 95 °C and even higher.

On the one hand, strong heating requires appropriate power (which is especially noticeable in the case of instant electric heaters). On the other hand, the higher the temperature of hot water, the less it is needed for a comfortable outlet temperature, after mixing with cold water; this reduces the consumption of heated water, which is especially important for storage boilers. In addition, many models have thermostats (see "Features").

Also, note that heating to operating values may involve different ΔT (degree of temperature change) — depending on the initial temperature of the cold water. The actual performance of the heater directly depends on ΔT; this moment is described in more detail below, in the paragraphs devoted to performance at different ΔT.

Performance (Δt ~50 °C)

Water heater performance when heating water by approximately 50 °C above the initial temperature.

Productivity is the maximum amount of hot water the unit can produce in a minute. It depends not only on the power of the heater as such, but also on how much water needs to be heated: the higher the temperature difference ΔT between cold and heated water, the more energy is required for heating and the smaller the volume of water with which the unit can handle in this mode. Therefore, the performance of water heaters must be indicated for specific options ΔT — namely 25 °C, 40 °C and/or 50 °C. And it is worth choosing according to this indicator taking into account the real needs for hot water: exactly how much and what temperature is needed for a particular situation. Methods of such calculations can be found in special sources.

Recall that water begins to be felt by a person as warm somewhere from 40 °C, as hot — somewhere from 50 °C, and the temperature of hot water in central water supply systems (according to official standards) is at least 60 °C. Thus, Δt~50 °C can be described as a very significant degree of heating: it allows even water with a temperature of about zero to be heated to the “hot” state, and the level of 60 °C can be reached at an initial temperature of only 10 °C (this temperature, for example, it is quite possible to meet in cold tap water even in the off-season, not to mention the summer). However, in modern water heaters, operati...ng temperatures above 60 °C are often found; to achieve them, you usually have to work with ΔT greater than 50 °C — respectively, and the actual performance is less than indicated in this paragraph. Nevertheless, it is this parameter that is closest to the real capabilities of the water heater when it comes to the full conversion of cold water into hot.

Efficiency

Heater efficiency.

Recall that efficiency is the ratio (in percent) between useful work and total energy consumed. In water heaters, this parameter is indicated mainly for gas models of an instant heat design. It describes what part of the heat from the gas burning in the combustion chamber is transferred to the water; accordingly, the higher the efficiency — the more efficient this model, the less gas it will need to heat a certain volume of water to a certain temperature. However, the increase in efficiency inevitably affects the price of the device; on the other hand, additional spending can quickly pay off due to gas savings.

In general, modern instant gas heaters have fairly high efficiency — from 81 – 84% in the most modest models to 90% or more in the most efficient ones.

Ignition type

The method of ignition of gas in gas water heaters.

— Batteries. Ignition from an electric spark created by a special electrical circuit powered by batteries. Battery ignition allows you to ignite without unnecessary wires, it can be used in models that do not require a mains connection at all. However, the user has to monitor the condition of the batteries and periodically change them, but this does not have to be done so often, and the replacement itself is not difficult.

— Mains. Ignition from an electric spark created by electricity from a socket. Batteries do not need to be changed in such systems but water heaters require a connection to the mains. Mains ignition is found mainly among gas heaters with advanced electronic control, in which power from the outlet is required for control circuits — it makes sense to power the ignition from the same outlet.

Piezo ignition. Ignition due to a piezoelectric element — a special device that generates electricity when a button is pressed (transforms the mechanical energy of pressing into electrical energy). Piezo ignition does not require battery power, and the life of the piezo element is usually comparable to the life of the heater itself.

Turbine. It is used in instant water heaters (see "Type"). With this type of ignition, electricity to crea...te a spark is generated by a microturbine driven by the movement of water through the heater. At the same time, in many cases, no additional actions are required from the user — ignition occurs automatically when the tap is opened and water begins to move through the device.

Note that most gas boilers also allow traditional ignition, from a match or other open flame. This option is provided as a spare, in case of failure of the main ignition system.

Flue diameter

Flue diameter for which the gas water heater is designed (see "Energy source").

This parameter is useful primarily for the selection and installation of a flue for a specific device. At the same time, it is worth remembering that the design of the duct differs depending on the type of combustion chamber (see above). So, for an open chamber, an ordinary pipe is used; in such cases, one diameter is indicated in the characteristics. But closed (turbocharged) combustion chambers are usually made under the so-called coaxial flue — a channel of the "pipe in pipe" type, where combustion products are brought out through the inner pipe, and the air necessary for fuel combustion is taken from the outside through the outer pipe. For such chimneys, two diameters are indicated for each of the pipes.

Gas consumption

It is the amount of gas a device consumes.

Functions

Among the functions of the water heater there are thermostat, water flow regulator, Smart (auto mode), programmer, display and control via the Internet. More about each of them

— Thermostat. A device that allows you to control the temperature of the water at the outlet of the heater. In storage models (see "Type"), the thermostat sets the maximum temperature for heating water in the tank; in instant devices, this function is carried out by changing the intensity of heating.

— Automatic water flow regulator. It is used in instant water heaters. Since the water in such devices heats up in the process of its movement through the heater, the higher the speed of water movement (the greater the pressure), the lower the heating temperature, and if the pressure is too high, the power of the device may simply not be enough for effective heating. The use of an automatic water flow regulator avoids this — this system regulates the speed of water movement through the heater, limiting it if necessary.

— Smart (auto mode). A special “smart” mode in which the boiler is controlled (primarily the intensity of heating) automatically. Specific features of this mode may vary depending on the model. However, the following format of operation is most common: during...the first week of use, the device remembers at what time of the day the hot water was used, and then the heater’s operating mode adjusts to this data. Thus, the water heater provides the user with hot water at the right time and, at the same time, does not waste energy on heating during hours when heating is not needed.

— Programmer. The presence of a programmable thermostat — a device that allows not only to maintain the temperature but also to programme the operation of the device for a certain period. The simplest programmers work like a timer, turning on at the right time (vacation or holiday mode, when the device is not active for several days, and when the family returns to the house, it will turn on and heat the water). More advanced ones allow you to set the mode of operation for individual days. Either way, this feature provides added convenience and eliminates the need to constantly adjust the operation of the device manually. On the other hand, the presence of a programmer affects the cost.

— Display. Usually, a simple LCD screen with a few characters is used as a display. However, even such equipment significantly increases the convenience and information content of management. Various service data can be shown on the display — from the temperature of the water in the tank to messages about malfunctions and failures. This feature slightly increases the cost of the device, but compared to the total cost of the heater, this moment is usually insignificant.

— Control via the Internet. The specific nuances of such control may vary: for example, some models use a special application installed on a smartphone or tablet, while others can work through a regular browser from any computer. However, this function allows you to control the heater from almost anywhere in the world — provided that there is access to the Internet. In addition, with this control, the user can also monitor the status of the device and receive various notifications (on and off, about the temperature of the water in the tank, about various problems, etc.).
Roda R JSD20-A1 often compared
Bosch Therm 4000 O P often compared