Dark mode
United Kingdom
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Welders

Comparison Tekhmann TWI-305 MIG 846815 vs Tesla Weld MIG/MAG/MMA 301

Add to comparison
Tekhmann TWI-305 MIG 846815
Tesla Weld MIG/MAG/MMA 301
Tekhmann TWI-305 MIG 846815Tesla Weld MIG/MAG/MMA 301
Outdated Product
from $416.12
Outdated Product
TOP sellers
Main
Two welding modes (MMA, MIG/MAG). Hot start. Arc forcing. Anti-stick protection. Operation at reduced voltage (MIG - 160 V, MMA - 170 V). High switching frequency ratio.
Typesemi-automatic invertersemi-automatic inverter
Welding type
MMA
MIG/MAG
MMA
MIG/MAG
Specs
Welding currentDCDC
Input voltage230 V230 V
Minimum input voltage160 V
Power consumption7.8 kW7 kW
Open circuit voltage60 V
Min. welding current20 А10 А
Max. welding current140 А300 А
Duty cycle75 %60 %
Max. electrode size3 mm5 mm
Minimum wire diameter0.8 mm0.6 mm
Max. wire diameter1 mm1 mm
Wire feed speed10 m/min12 m/min
More features
Hot Start
Arc Force
Anti-Stick
VRD
digital display
 
 
 
 
digital display
Coil locationinternalinternal
Detachable welding cable (MIG/MAG)removableremovable
General
Protection class (IP)21
Insulation classH
Electrode holder cable2.5 m3 m
Mass cable1.5 m2 m
Torch cable3 m3 m
Weight12.8 kg19 kg
Added to E-Catalogapril 2019may 2014

Minimum input voltage

The minimum actual input voltage at which the welding machine remains operational.

Such information is useful primarily for working in unstable networks, where the voltage tends to “sag” a lot, as well as from autonomous power sources (for example, generators), which can also produce voltage below the nominal one.

Power consumption

The maximum power consumed by the welding machine during operation, expressed in kilowatts (kW), that is, thousands of watts. In addition, the designation in kilovolt-amperes (kVA) can be used, see below for it.

The higher the power consumption, the more powerful the current the device is capable of delivering and the better it is suitable for working with thick parts. For different materials of different thicknesses, there are recommendations for current strength, they can be clarified in specialized sources. Knowing these recommendations and the open circuit voltage (see below) for the selected type of welding, it is possible to calculate the minimum required power of the welding machine using special formulas. It is also worth considering that high power creates corresponding loads on the wiring and may require connection directly to the shield.

As for the difference between watts and volt-amperes, the physical meaning of both units is the same — current times voltage. However, they represent different parameters. In volt-amperes, the total power consumption is indicated — both active (going to do work and heat individual parts) and reactive (going to losses in coils and capacitors). This value is more convenient to use to calculate the load on the power grid. In watts, only active power is recorded; according to these numbers, it is convenient to calculate the practical capabilities of the welding machine.

Open circuit voltage

The voltage supplied by the welding machine to the electrodes. As the name suggests, it is measured without load — i.e. when the electrodes are disconnected and no current flows between them. This is due to the fact that at a high current strength characteristic of electric welding, the actual voltage on the electrodes drops sharply, and this does not make it possible to adequately assess the characteristics of the welding machine.

Depending on the characteristics of the machine (see "Type") and the type of work (see "Type of welding"), different open circuit voltages are used. For example, for welding transformers, this parameter is about 45 – 55 V (although there are higher voltage models), for inverters it can reach 90 V, and for semi-automatic MIG / MAG welding, voltages above 40 V are usually not required. Also, the optimal values \u200b\u200bdepend on type of electrodes used. You can find more detailed information in special sources; here we note that the higher the open-circuit voltage, the easier it is usually to strike the arc and the more stable the discharge itself.

Also note that for devices with the VRD function (see "Advanced"), this parameter indicates the standard voltage, without reduction through VRD.

Min. welding current

The smallest current that the device is able to supply through the electrodes during operation. For different materials, different thicknesses of the parts to be welded and different types of welding itself, the optimal welding current will be different; there are special tables that allow you to determine this value. The general rule is that a high current is far from always useful: it gives a rougher seam; when working with thin materials, it is possible to melt through the junction instead of connecting the parts, not to mention excessive energy consumption. Therefore, if you have to work with parts of small thickness (2-3 mm), before choosing a welding machine, it makes sense to make sure that it is capable of delivering the desired current without “busting”.

Max. welding current

The highest current that the welding machine is capable of delivering through the electrodes during operation. In general, the higher this indicator, the thicker the electrodes the device can use and the greater the thickness of the parts with which it can work. Of course, it does not always make sense to chase high currents — they are more likely to damage thin parts. However, if you have to deal with large-scale work and a large thickness of the materials to be welded, you simply cannot do without a device with the appropriate characteristics. Optimum welding currents depending on materials, type of work (see "Type of welding"), type of electrodes, etc. can be specified in special tables. As for specific values, in the most “weak” models, the maximum current does not even reach 100 A, in the most powerful ones it can exceed 225 A and even 250 A.

Duty cycle

The duty cycle allowed for the welding machine.

Almost all modern welding machines require breaks in operation — for cooling and general "recovery". The frequency of inclusion indicates what percentage of the time of the total work cycle can be used directly for work. In this case, 10 minutes is usually taken as a standard cycle. Thus, for example, a device with a duty cycle of 30% will be able to work continuously for less than 3 minutes, after which it will need at least 7 minutes of interruption. However, for some models, a cycle of 5 minutes is used; these nuances should be clarified according to the instructions.

In general, high frequency is required mainly for high-volume professional work; with a relatively simple application, this parameter does not play a decisive role, especially since you have to take breaks during work. As for specific values, the mentioned 30% is a very limited figure, typical mainly for entry-level devices. A value of 30 – 50% is also low; in the range of 50 – 70% is the majority of modern devices, and the most "hardy" models provide a frequency of more than 70%.

Max. electrode size

The largest diameter of the electrode that can be installed in the welding machine. Depending on the thickness of the parts, the material from which they are made, the type of welding (see above), etc. the optimal electrode diameter will be different; there are special tables that allow you to determine this value. Large diameter may be required for thick materials. Accordingly, before purchasing, you should make sure that the selected model will be able to work with all the necessary electrode diameters.

In modern welding machines, an electrode diameter of 1 mm or less is considered very small, 2 mm — small, 3 mm and 4 mm — medium, and powerful performant models use electrodes of 5 mm or more.

Minimum wire diameter

The minimum diameter of the welding wire that the machine can work with.

Wire electrodes are used in semi-automatic models (see "Type"), mainly for MIG/MAG welding (see "Type of welding"). The thinner the electrode, the better it is suitable for delicate work where a small thickness and width of the seam is required. Specific recommendations on the diameter of the wire for a particular task can be found in special sources.

Wire feed speed

Wire feed speed provided by the semi-automatic model (see "Type"). The higher the speed (with the same thickness) — the faster you can lead the electrode over the seam and the less time the process takes. On the other hand, too fast feed makes it difficult to work with seams of small length. Detailed information on the optimal wire feed speed can be found in special sources.
Tekhmann TWI-305 MIG 846815 often compared
Tesla Weld MIG/MAG/MMA 301 often compared