Dark mode
United Kingdom
Catalog   /   Tools & Gardening   /   Machines & Equipment   /   Welders

Comparison Paton VDI-250E vs Paton VDI-200E

Add to comparison
Paton VDI-250E
Paton VDI-200E
Paton VDI-250EPaton VDI-200E
from $149.20 up to $219.96
Outdated Product
from $122.80 up to $179.96
Outdated Product
User reviews
0
0
0
1
0
0
0
3
TOP sellers
Main
Hot start. Arc force. Operation at reduced voltage (up to 170 V). 3 metre cords. Compact size and light weight.
Typeinverterinverter
Welding type
MMA
MMA
Specs
Welding currentDCDC
Input voltage230 V230 V
Minimum input voltage170 V
Power consumption6.9 kW
Power consumption8.8 kVA
Open circuit voltage80 V80 V
Min. welding current32 А25 А
Max. welding current250 А200 А
Max. welding current (duty cycle 100%)158 А126 А
Duty cycle40 %40 %
Max. electrode size5 mm5 mm
More features
Hot Start
Arc Force
Anti-Stick
Hot Start
Arc Force
Anti-Stick
General
Protection class (IP)2121
Electrode holder cable3 m3 m
Mass cable3 m3 m
Dimensions (HxWxD)240x110x270 mm200x100x265 mm
Weight4.35 kg4.5 kg
Added to E-Catalogseptember 2015september 2015

Minimum input voltage

The minimum actual input voltage at which the welding machine remains operational.

Such information is useful primarily for working in unstable networks, where the voltage tends to “sag” a lot, as well as from autonomous power sources (for example, generators), which can also produce voltage below the nominal one.

Power consumption

The maximum power consumed by the welding machine during operation, expressed in kilowatts (kW), that is, thousands of watts. In addition, the designation in kilovolt-amperes (kVA) can be used, see below for it.

The higher the power consumption, the more powerful the current the device is capable of delivering and the better it is suitable for working with thick parts. For different materials of different thicknesses, there are recommendations for current strength, they can be clarified in specialized sources. Knowing these recommendations and the open circuit voltage (see below) for the selected type of welding, it is possible to calculate the minimum required power of the welding machine using special formulas. It is also worth considering that high power creates corresponding loads on the wiring and may require connection directly to the shield.

As for the difference between watts and volt-amperes, the physical meaning of both units is the same — current times voltage. However, they represent different parameters. In volt-amperes, the total power consumption is indicated — both active (going to do work and heat individual parts) and reactive (going to losses in coils and capacitors). This value is more convenient to use to calculate the load on the power grid. In watts, only active power is recorded; according to these numbers, it is convenient to calculate the practical capabilities of the welding machine.

Power consumption

Power consumption of the welding machine, expressed in kilovolt-amperes.

kVA is a unit of power used in welding machines along with the more traditional kilowatts. The physical meaning of both units is the same — current multiplied by voltage; however, they denote different parameters. So, in kilowatts, only a part of the total power consumption is recorded — active power (goes to do work and to losses due to heating of individual parts); according to this indicator it is convenient to calculate the practical capabilities of the device. And kilovolt-amperes denote the total energy consumption — it also takes into account reactive power (it goes to losses in coils and capacitors during the operation of alternating current circuits). This data is useful for calculating the total load on the network or other power source.

The apparent power input in kVA will always be greater than the power in kW. However, some manufacturers go to the trick and indicate full power not at full, but at partial (for example, half) load. This gives the impression of efficiency, but is incorrect from a technical point of view. As for the ratio of energy consumption, the active power in kW is often 20-30% lower than the apparent power in kVA. So, in terms of kilovolt-amperes, it is quite possible to evaluate the performance of the unit.

As for specific values, in the most modest models they do not exceed 3 kVA. An indicator up to 5 kVA is considered low, up to 7 kVA — average, and in the most powerful units, the power consumption can reach 10 kVA or even more.

Min. welding current

The smallest current that the device is able to supply through the electrodes during operation. For different materials, different thicknesses of the parts to be welded and different types of welding itself, the optimal welding current will be different; there are special tables that allow you to determine this value. The general rule is that a high current is far from always useful: it gives a rougher seam; when working with thin materials, it is possible to melt through the junction instead of connecting the parts, not to mention excessive energy consumption. Therefore, if you have to work with parts of small thickness (2-3 mm), before choosing a welding machine, it makes sense to make sure that it is capable of delivering the desired current without “busting”.

Max. welding current

The highest current that the welding machine is capable of delivering through the electrodes during operation. In general, the higher this indicator, the thicker the electrodes the device can use and the greater the thickness of the parts with which it can work. Of course, it does not always make sense to chase high currents — they are more likely to damage thin parts. However, if you have to deal with large-scale work and a large thickness of the materials to be welded, you simply cannot do without a device with the appropriate characteristics. Optimum welding currents depending on materials, type of work (see "Type of welding"), type of electrodes, etc. can be specified in special tables. As for specific values, in the most “weak” models, the maximum current does not even reach 100 A, in the most powerful ones it can exceed 225 A and even 250 A.

Max. welding current (duty cycle 100%)

The highest welding current at which the machine is able to operate with a duty cycle of 100%.

See below for more information on the frequency of inclusion (PV). Here we recall that “100% duty cycle” means continuous operation, without shutdowns for cooling. Thus, the maximum welding current at 100% duty cycle is the highest current at which the machine can be used without interruption. Usually, this current is much lower than the maximum.
Paton VDI-250E often compared
Paton VDI-200E often compared