United Kingdom
Catalog   /   Automotive   /   Car Audio   /   Car Subwoofers

Comparison Hertz DS 300.3 vs Focal JMLab Auditor R-300 S

Add to comparison
Hertz DS 300.3
Focal JMLab Auditor R-300 S
Hertz DS 300.3Focal JMLab Auditor R-300 S
Outdated Product
from $79.96 up to $82.00
Outdated Product
TOP sellers
Application areacarcar
Designwithout bodywithout body
Typepassivepassive
Size12" (30 cm)12" (30 cm)
Tech specs
Rated power300 W300 W
Max. power600 W600 W
Frequency range28 – 300 Hz35 – 500 Hz
Sensitivity93 dB90 dB
Impedance4 ohm4 ohm
Resonant frequency33 Hz
General
Protective grille
Diffuser materialpulp / paperpolypropylene
Woofer Diameter300 mm300 mm
Woofer depth122 mm142 mm
Added to E-Catalogjuly 2019july 2014

Frequency range

The range of audio frequencies reproduced by the subwoofer. It is believed that the human ear is capable of perceiving a frequency range of the order of 16 – 20,000 Hz, but in this case note that the subwoofer is designed to reproduce the lower frequency band (up to 200 Hz). Accordingly, in the case of the lower limit of the range, everything is simple: “the lower, the better”; the upper one should not be lower than the lower limit of the main car audio — otherwise there will be "gaps" in the frequencies, which will affect the sound quality.

Sensitivity

Sensitivity determines the loudness of the subwoofer when a signal of a certain power is connected to it: with equal signal power and impedance (see below), the subwoofer with the higher sensitivity will sound louder.

Resonant frequency

The natural frequency of the cone in the subwoofer speaker, namely the frequency with which the cone will oscillate if the speaker is suspended freely in the air and a single impulse is transmitted to the cone (for example, by clicking on it with your finger). In subwoofers, this parameter determines, in particular, the lower limit of the frequency range (see above): at frequencies below the resonant sound power drops sharply. Accordingly, for deep rich bass, the resonant frequency should be as low as possible. This parameter is also used to calculate the size of the enclosure for the subwoofer.

Protective grille

The presence of protective devices in front of the main speaker of the subwoofer — this can be the grill itself, metal rods, plastic elements, etc. Such devices protect the device from foreign objects to a certain extent, and they can also play an aesthetic role.

Diffuser material

The material from which the speaker cone in the subwoofer is made. Determines the sound quality and, to some extent, the cost of the device.

— Pulp/paper. Historically the first diffuser material. Its advantages are lightness (which ensures high speaker sensitivity), as well as a smooth frequency response (amplitude-frequency response), which positively affects the sound quality. Among the shortcomings — low strength, which limits the power of such subwoofers, as well as softness, somewhat "blurring" the sound in difficult moments. In addition, paper diffusers are sensitive to moisture.

— Polypropylene. Synthetic polymer, in some aspects similar to paper, but differing from it in higher strength and resistance to moisture. It also has a smooth frequency response. Somewhat more cruel, but still belongs to the soft.

— Polyurethane. Another polymer material. At a low cost, it is somewhat stiffer than polypropylene, and is also very resistant to mechanical stress, which allows you to create powerful speakers.

— Kevlar. Kevlar fibre is highly durable (higher than steel); it also has good rigidity, which has a positive effect on fidelity in difficult moments. However, such diffusers are not cheap.

— Carbon fibre. It belongs to premium materials: it has high strength at a very low weight, and in the case of subwoofers, it is also worth mentioning the good rigidity that ensures a clear sound. Among the shortcomings — a somew...hat uneven frequency response and an impressive cost.

— Carbon. Another name used for carbon fibre is mainly for promotional purposes, for brevity and “impressiveness” of sound. See above for more details on carbon fibre.

— Fibreglass. Such material consists of ordinary glass stretched into filaments; unlike the classical form of glass, such threads do not break or break. It's lightweight (respectively sensitive), relatively cheap, resistant to moisture and temperature changes, and still provides good (though not outstanding) sound quality.

— Composite materials. Composite is a material that consists of two or more materials with a clear separation between them. In subwoofer cones, carbon fibre composites (based on carbon fibre, see above) are most often used. Such diffusers have all the advantages of carbon fibre and are able to provide good sound quality — however, due to the characteristics of the frequency response of the material, rather complex electronic circuits have to be used to achieve this quality, which affects, in particular, the price of subwoofers.

— Aluminium. Aluminium cones have the highest rigidity of all, which ensures high fidelity of sound transmission even in difficult moments. The "reverse side of the coin" in this case are their own extraneous "ringing" that occurs in the diffuser. To eliminate them, you have to use various tricks that significantly complicate the design and increase the price of the subwoofer.

Note that each material has its own characteristics and shades of sound, which you should pay attention to when choosing — a more expensive and high-quality material will not necessarily give a sound that you personally will like more.

Woofer depth

The size of the main subwoofer speaker from the front (usually the frame protruding beyond the diffuser) to the rear edge (where the magnet is usually located). In practice, it matters when selecting enclosures for frameless models, as well as when installing Free Air (see "Design"): this is the depth to which the speaker will be "recessed" into the enclosure or trunk. And a flat subwoofer will not always produce less bass than its more voluminous counterpart.
Hertz DS 300.3 often compared