United Kingdom
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison Huawei B525s-23a vs Huawei B593

Add to comparison
Huawei B525s-23a
Huawei B593
Huawei B525s-23aHuawei B593
from £85.00 
Outdated Product
from £13.95 
Outdated Product
TOP sellers
Main
RJ11 port for phone. Two SMA connectors for connecting external LTE antennas.
Product typerouterrouter
Data input (WAN-port)
Ethernet (RJ45)
SIM card
 
SIM card
4G speed (LTE)Cat.6 (300/50 Mbps)Cat.4 (150/50 Mbps)
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
 
Frequency band
2.4GHz
5 GHz
2.4GHz
 
Operating rangesdual-band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz300 Mbps
Wireless speed 5 GHz837 Mbps
Connection and LAN
LAN
4 ports
1 Gbps
4 ports
100 Mbps
Reassignable WAN / LAN1 port
USB 2.011
Antenna and transmitter
Number of antennas22
Antenna typeinternalinternal
2.4 GHz antennas12
5 GHz antennas1
Antennas (mobile internet)2 connectors for antennas2 connectors for antennas
Transmitter power21 dBm
Functions
Features
NAT
firewall
NAT
firewall
More features
DHCP server
FTP server
file server
print server
VPN
DHCP server
 
file server
print server
 
Security
Safety standards
WPA
WEP
WPA2
WPA
WEP
WPA2
General
Dimensions226x163x52 mm190x35x176 mm
Weight370 g500 g
Color
Added to E-Catalognovember 2017june 2014

Data input (WAN-port)

Methods for connecting to the Internet (or other external network, such as in bridge mode) supported by the device.

The classic, most common version of such a connection nowadays is LAN (Ethernet), but this is not limited to this. A wired connection can also be made via ADSL or SFP fiber, and wirelessly via mobile networks (using a SIM card, SIM card 5G or an external modem for 3G or 4G), as well as via Wi-Fi. Here is a more detailed description of each option:

— Ethernet (RJ45). Classic wired connection via a network cable via an RJ-45 connector. Also known as "LAN", although this designation is not entirely correct. Nowadays, it is one of the most common methods of wired Internet connection, and is also widely used in local networks. This is due to the fact that the speed of Ethernet is actually limited only by the capabilities of network controllers; at the same time, even the simplest modules support up to 100 Mbps, and in advanced equipment this value can reach 10 Gbps.

— ADSL. A technology primarily used for wired Internet connections over existing landline telephone lines. This is its main advantage — you can use ready-made lines without fiddling with laying numerous addi...tional wires; at the same time, ADSL works independently of telephone calls and does not interfere with them. At the same time, the speed of such a connection is noticeably lower than via Ethernet — even in advanced equipment it does not exceed 24 Mbps. In addition, ADSL traffic is distributed asymmetrically: full speed is achieved only when working for reception, data transmission speed is much lower, which creates problems for video communication and some other tasks. So nowadays, ADSL is gradually being replaced by more advanced standards, although the complete disappearance of this technology is still far away.

— Wi-Fi. Connect to an external data source via Wi-Fi. By definition, this format of operation is used by Wi-Fi adapters (see "Device type"), as well as by most MESH equipment. (However, if the MESH system package includes both nodes and the main control device for them, then the WAN input can be specified for the control device, and often this is not Wi-Fi). Also, this type of data input can be provided in other types of equipment — in particular, routers and access points (for example, to work in bridge or repeater mode).

— 3G modem (USB). Internet connection via 3G mobile network using a separate external modem connected to the USB port. Most often, we are talking about UMTS networks (the development of GSM mobile communications), the most common in Europe and the post-Soviet space; however, it may also be possible to use modems for CDMA networks (EV-DO technology). These nuances, as well as compatibility with specific modem models, need to be clarified separately. However, anyway, 3G may be a good option for situations where a wired Internet connection is difficult or impossible, such as in the private sector. In addition, some Wi-Fi devices with this feature are equipped with autonomous power supplies and can even be used on the go. The data transfer speed of 3G is close to broadband wired connection (from 2 to 70 Mbps with a normal signal, depending on the specific technology); however, it is less than in 4G networks (see below), but 3G coverage is more extensive, and equipment for this standard is cheaper.

— 4G (LTE) modem (USB). Internet connection via 4G mobile network (LTE) using a separate external modem connected to the USB port. The main features are similar to the 3G connection described above, adjusted for the fact that in this case more advanced fourth-generation networks are used. The data transfer rate in such networks reaches about 150 Mbps; they are not as widespread as 3G-connection, but soon we can expect a change in the situation. In addition, it should be noted that in Europe and the post-Soviet space, LTE networks are usually deployed on the basis of 3G UMTS and GSM networks; so in the absence of full-fledged 4G coverage, modems for such networks can work according to the 3G and even GSM standard.

— SIM card. Connecting to the Internet via a mobile network using a mobile operator's SIM card installed directly in the device. The specific type of supported networks depends both on the capabilities of the router and on the conditions of a particular mobile operator; however, all such equipment is compatible with at least 3G networks, and often 4G as well. The features of these networks are described in detail above (you can also read about the advantages of a mobile Internet connection there). This option is convenient because it allows you to do without a separate USB modem — you just need to purchase a SIM card, the cost of which is negligible. In addition, the use of "sim cards" has a positive effect on compactness and ease of carrying. On the other hand, the built-in mobile communication module significantly affects the overall cost — and you will have to pay for it anyway (whereas a model with support for external modems does not have to be bought immediately with a modem, such devices usually allow wired connection). Therefore, you should pay attention to this option if you initially plan to connect to the Internet through mobile networks.

- SIM card (5G). The ability to operate Wi-Fi equipment in high-speed 5G mobile networks with a peak bandwidth of up to 20 Gbps for reception and up to 10 Gbps for data transmission. Implemented via a SIM card with appropriate 5G support. This standard reduces power consumption compared to previous versions, and it also uses a number of complex solutions aimed at improving the reliability and overall quality of communication - in particular, multi-element antenna arrays (Massive MIMO) and beamforming technologies (Beamforming).

— SFP (optics). Connection via fiber optic cable of the SFP standard. Such a connection can be carried out at high speeds (measured in gigabytes per second), and the fiber, unlike the Ethernet cable, is practically insensitive to external interference. On the other hand, the support of this standard is not cheap, and its capabilities are unnecessary for domestic use. Therefore, SFP is found mainly in professional-level Wi-Fi devices.

4G speed (LTE)

The 4G (LTE) mobile connection speed supported by the device.

All modern LTE equipment is assigned one or another category (Cat.3, Cat.4, Cat.6, Cat.7, Cat.9, Cat.12, Cat.13, Cat.15, Cat.16, Cat.18, Cat.19, Cat.20), on which the data transfer rate directly depends. This paragraph specifies both this category and specific speed indicators, moreover, in two parameters — for reception and for transmission. The transmission speed is always much lower, but given the specifics of mobile Internet access, this moment is usually not critical.

Note that equipment with different speed categories will be quite compatible with each other, however, the throughput will be limited by the capabilities of the slower device. It is also worth saying that this paragraph indicates the theoretical maximum; practical indicators can be noticeably lower (depending on the quality of the coverage, the congestion of the air, the features of specific electronics). However, a modem with a higher speed category will perform faster in fact.

Wi-Fi standards

Wi-Fi standards supported by the equipment. Nowadays, in addition to modern standards Wi-Fi 4 (802.11n), Wi-Fi 5 (802.11ac), Wi-Fi 6 (802.11ax)(its variation Wi-Fi 6E), Wi-Fi 7 (802.11be) and WiGig (802.11ad), you can meet also support for earlier versions — Wi-Fi 3 (802.11g) and even Wi-Fi 1 (802.11b). Here is a more detailed description of each of these versions:

— Wi-Fi 3 (802.11g). An outdated standard, like Wi-Fi 1 (802.11b), which has sunk into oblivion. It was widely used before the advent of Wi-Fi 4, nowadays it is used mainly as an addition to newer versions — in particular, in order to ensure compatibility with outdated and low-cost equipment. Operates at a frequency of 2.4 GHz, the maximum data transfer rate is 54 Mbps.

— Wi-Fi 4 (802.11n). The first of the common standards that supports the frequency of 5 GHz; can operate in this range or in the classic 2.4 GHz. It is worth emphasizing that some models of Wi-Fi equipment for this standard use only 5 GHz, which is why they are incompatible with earlier versions of Wi-Fi. The maximum speed for Wi-Fi 4 is 600 Mbps; in modern wireless devices, this standard is very popular, only recently it began to be squeezed into this position by Wi-Fi 5.

— Wi-Fi 5...(802.11ac). The successor to Wi-Fi 4, which finally moved to the 5 GHz band, which had a positive effect on the reliability of the connection and data transfer rate: it is up to 1.69 Gbps per antenna and up to 6.77 Gbps in general. In addition, this is the first version to fully implement Beamforming technology (for more details, see "Functions and Capabilities").

— Wi-Fi 6, Wi-Fi 6E (802.11ax). The development of Wi-Fi 5, which introduced both an increase in speed to 10 Gbps, and a number of important improvements in the format of work. One of the most important innovations is the use of an extensive frequency range — from 1 to 7 GHz; this, in particular, allows you to automatically select the least loaded frequency band, which has a positive effect on the speed and reliability of the connection. At the same time, Wi-Fi 6 devices are capable of operating at classic frequencies of 2.4 GHz and 5 GHz, and a modification of the Wi-Fi 6E standard is capable of operating at frequencies from 5.9 to 7 GHz, it is generally accepted that devices with Wi-Fi 6E support operate on frequency of 6 GHz, while there is full compatibility with earlier standards. In addition, some improvements were introduced in this version regarding the simultaneous operation of several devices on one channel, in particular, we are talking about OFDMA technology. Thanks to this, Wi-Fi 6 gives the smallest of modern standards a drop in speed when the air is loaded, and the modification of Wi-Fi 6E operating at a frequency of 6 GHz has the least amount of interference.

— Wi-Fi 7 (802.11be). This Wi-Fi standard began to be implemented in 2023. Thanks to the use of 4096-QAM modulation, a maximum theoretical data rate of up to 46 Gb / s can be squeezed out of it. Wi-Fi 7 supports three frequency bands: 2.4 GHz, 5 GHz and 6 GHz. The maximum bandwidth in the standard has been increased from 160 MHz to 320 MHz - the wider the channel, the more data it can transmit overnight. Among the interesting innovations in Wi-Fi 7, the development of MLO (Multi-Link Operation) is noted - with its help, connected devices exchange data using several channels and frequency bands simultaneously, which is especially important for VR and online games. The Multiple Resource Unit technology is designed to minimize communication delays when there are many connected client devices. The new 16x16 MIMO protocol is also aimed at increasing throughput with a large number of simultaneous connections, doubling the number of spatial streams compared to the previous Wi-Fi 6 standard.

WiGig (802.11ad). Wi-Fi standard using an operating frequency of 60 GHz; data transfer rates can be up to 10 Gbps (depending on the specific version of WiGig). The 60 GHz channel is much less loaded than the more popular 2.4 GHz and 5 GHz, which has a positive effect on the reliability of data transmission and reduces latency; the latter is especially important in games and some other special tasks. On the other hand, the increase in frequency has significantly reduced the connection range (for more details, see "Frequency range"), so that in fact this standard is only suitable for communication within the same room.

Note that in fact, the data transfer rate is usually much lower than the theoretical maximum — especially when several Wi-Fi devices operate on the same channel. Also note that different standards are backwards compatible with each other (with a speed limit according to the slower one) provided that the frequencies match: for example, 802.11ac can work with 802.11n, but not with 802.11g.

Frequency band

Standard Wi-Fi frequency bands supported by the device.

This parameter is directly related to the Wi-Fi standards (see above) that the equipment complies with. At the same time, there are standards that cover several bands at once (such as Wi-Fi 4 and Wi-Fi 6), and not every device compatible with them supports all these bands at once; so in such cases this point should be clarified separately. In addition, the frequencies commonly used nowadays have common features, here they are:

— 2.4 GHz. Classic range: used in the earliest Wi-Fi standards, and supported by many modern versions. Therefore, quite a lot of Wi-Fi equipment still works only at 2.4 GHz(although exceptions are increasingly common). The main advantages of such equipment are simplicity, low cost, and compatibility even with frankly outdated wireless devices. On the other hand, the 2.4 GHz band is extremely busy: in addition to numerous Wi-Fi devices, it is also used by Bluetooth modules and some other types of electronics. This may degrade the quality and speed of the connection.

— 5 GHz. A band introduced to overcome the shortcomings of 2.4 GHz — in particular, to offload communication channels and separate Wi-Fi from other wireless technologies. In addition, increasing the frequency allowed to increase the communication speed. 5 GHz is used as one of the operating frequencies in the Wi-Fi 4 and Wi-Fi 6 standards (see above) and as the only one...in Wi-Fi 5. So you can find devices on the market that operate only at 5 GHz, but more widespread received equipment with multiple bands, where this frequency is only one of the supported.

— 6 GHz. An unloaded frequency introduced into use since the Wi-Fi 6E generation. The new range provides the ability to simultaneously operate numerous client devices at high speed with a minimum amount of interference and delays in signal transmission. At the moment, this is the freest, widest and fastest Wi-Fi range. However, in some regions, the 6 GHz frequency remains unavailable due to the occupancy of the band by means of military, fixed or radio relay wireless communications.

— 60 GHz. Range implemented in the WiGig standard; today it is used only in it, and as the only one. A significant increase in frequency compared to the more common 2.4 GHz and 5 GHz options has a positive effect on the quality of communication. So, with the same theoretical maximum as that of Wi-Fi 6 (10 Gbps), the WiGig standard gives a higher actual data exchange rate, as well as fewer delays and lags; this is especially important in games and some specific tasks. The downside of these advantages is a small communication range: even when using Beamforming (see "Functions and Capabilities"), it does not exceed 10 m in open space, and an obstacle like a wall can become insurmountable for a 60 GHz channel. Therefore, in Wi-Fi equipment, this frequency is found mainly among rather specific devices — access points (including directional ones), which are designed to connect individual network segments in bridge mode (see ibid.). It is this mode of use that is one of the most optimal, given the properties of this range. However, 60 GHz support is also increasingly found in consumer gadgets (smartphones, laptops), so routers are also being released for this frequency.

— Natural frequency. In rare cases, the operation of Wi-Fi equipment is possible at natural frequencies that do not fall under the standard generally accepted values. Such devices are mainly used to build point-to-point and point-to-multipoint radio bridges. Their advantages include low frequency noise from standard Wi-Fi networks, and, as a result, increased communication range. It is worth noting that it is impossible to connect directly to such devices from a laptop or smartphone. It is also necessary to take into account the legislative aspect, since in each country the use of frequencies is regulated differently.

Operating ranges

The number of wireless bands and channels supported by the router. Specified only for models that work with more than one range.

Dual-band (2.4 GHz and 5 GHz). Devices that simultaneously support two popular communication bands — 2.4 GHz and 5 GHz — in the "one communication channel per band" format. This ensures compatibility with most Wi-Fi standards (see above), and in some cases also has a positive effect on the quality of communication. For example, a Wi-Fi adapter (see "Device Type") with this feature may provide the ability to evaluate the load on both bands and automatically select the less loaded one.

Three-channel (2.4 GHz and 5 GHz in 2 channels). An improved version of the dual-band operation format: in the 5 GHz band, communication is carried out on two channels. This allows, for example, to “raise” three wireless connection channels on one router at once (three visible networks in the list of wireless networks) and achieve even higher throughput. The advantages of this format are especially noticeable when the router works simultaneously with several wireless devices.

Tri-band (2.4 GHz, 5 GHz, 60 GHz). The most "omnivorous" type of modern Wi-Fi equipment, compatible with all popular standards — from the outdated 802.11 b / g to the relatively new 802.11 ad. Also, the abundance of ranges contributes to an increase in spee...d, especially when working with multi-range devices.

Wireless speed 2.4 GHz

The maximum speed provided by the device when communicating wirelessly in the 2.4 GHz band.

This range is used in most modern Wi-Fi standards (see above) - as one of the available or even the only one. The theoretical maximum for it is 600 Mbit. In reality, Wi-Fi at a frequency of 2.4 GHz is used by a large number of client devices, from which congestion of data transmission channels emerges. Also, the number of antennas affects the speed performance of the equipment. It is possible to achieve the speed declared in the specification only in an ideal situation. In practice, it can be noticeably smaller (often by several times), especially with an abundance of wireless technology simultaneously connected to the equipment. The maximum speed at 2.4 GHz is specified in the characteristics of specific models to understand the real capabilities of Wi-Fi equipment. As for the numbers, according to the capabilities in the 2.4 GHz band, modern equipment is conditionally divided into models with speeds up to 500 Mbit inclusive and over 500 Mbit.

Wireless speed 5 GHz

The maximum speed supported by the device when communicating wirelessly in the 5 GHz band.

This range is used in Wi-Fi 4, Wi-Fi 6 and Wi-Fi 6E as one of the available bands, in Wi-Fi 5 as the only one (see "Wi-Fi Standards"). The maximum speed is specified in the specifications in order to indicate the real capabilities of specific equipment - they can be noticeably more modest than the general capabilities of the standard. Also, in fact, it all depends on the generation of Wi-Fi. For example, devices with Wi-Fi 5 support can theoretically deliver up to 6928 Mbit (using eight antennas), with Wi-Fi 6 support up to 9607 Mbit (using the same eight spatial streams). The maximum possible communication speed is achieved under certain conditions, and not every model of Wi-Fi equipment fully satisfies them. Specific figures are conditionally divided into several groups: the value up to 500 Mbit is rather modest, many devices support speeds in the range of 500 - 1000 Mbit, indicators of 1 - 2 Gbps can be attributed to the average, and the most advanced models in class provide a data exchange rate of over 2 Gbps.

LAN

In this case, LAN means standard network connectors (known as RJ-45) designed for wired connection of LAN devices — PCs, servers, additional access points, etc. The number of ports corresponds to the number of devices that can be directly connected to wired equipment. way.

In terms of speed, 100 Mbps (Fast Ethernet) and 1 Gbps (Gigabit Ethernet) are the most popular options today. At the same time, thanks to the development of technology, more and more gigabit devices are being produced, although in fact this speed is critical only when transferring large amounts of information. At the same time, some models, in addition to the standard speed of the main LAN ports, may have a 2.5 Gbps, 5 Gbps and even 10 Gbps LAN port with increased bandwidth.

Reassignable WAN / LAN

Reassignable WAN / LAN port in the design of the device, which can work both with an external WAN network and with a local LAN. This solution allows you to reduce the total number of connection ports and at the same time expand the functionality of the equipment for flexible adaptation to user needs.
Huawei B525s-23a often compared
Huawei B593 often compared