United Kingdom
Catalog   /   Computing   /   Networking   /   Wi-Fi Equipment

Comparison TP-LINK Archer T3U vs TP-LINK Archer T4U

Add to comparison
TP-LINK Archer T3U
TP-LINK Archer T4U
TP-LINK Archer T3UTP-LINK Archer T4U
Compare prices 12Compare prices 5
User reviews
2
0
0
0
TOP sellers
Main
MU-MIMO support. USB 3.2 Gen1 connection interface.
Dual mode operation. Support for 802.11ac. USB 3.0 connection interface. Extension cord included.
Product typeWi-FiWi-Fi
InterfaceUSB 3.2 gen1USB 3.2 gen1
Data input (WAN-port)
Wi-Fi
Wi-Fi
Wireless Wi-Fi connection
Wi-Fi standards
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Wi-Fi 3 (802.11g)
Wi-Fi 4 (802.11n)
Wi-Fi 5 (802.11ac)
Frequency band
2.4GHz
5 GHz
2.4GHz
5 GHz
Operating rangesdual-band (2.4 GHz and 5 GHz)dual-band (2.4 GHz and 5 GHz)
Wireless speed 2.4 GHz400 Mbps300 Mbps
Wireless speed 5 GHz867 Mbps867 Mbps
Antenna and transmitter
Number of antennas1
Antenna typeinternalinternal
MU-MIMO
2.4 GHz antennas1
5 GHz antennas1
2.4 / 5 GHz antennas1
Transmitter power20 dBm20 dBm
Security
Safety standards
WPA
WEP
WPA2
 
WPA
WEP
WPA2
802.1x
General
Operating temperature0 °C ~ +40 °C
Dimensions41x20x10 mm92x29x15 mm
Color
Added to E-Catalogmay 2019april 2015

Wireless speed 2.4 GHz

The maximum speed provided by the device when communicating wirelessly in the 2.4 GHz band.

This range is used in most modern Wi-Fi standards (see above) - as one of the available or even the only one. The theoretical maximum for it is 600 Mbit. In reality, Wi-Fi at a frequency of 2.4 GHz is used by a large number of client devices, from which congestion of data transmission channels emerges. Also, the number of antennas affects the speed performance of the equipment. It is possible to achieve the speed declared in the specification only in an ideal situation. In practice, it can be noticeably smaller (often by several times), especially with an abundance of wireless technology simultaneously connected to the equipment. The maximum speed at 2.4 GHz is specified in the characteristics of specific models to understand the real capabilities of Wi-Fi equipment. As for the numbers, according to the capabilities in the 2.4 GHz band, modern equipment is conditionally divided into models with speeds up to 500 Mbit inclusive and over 500 Mbit.

Number of antennas

The total number of antennas (of all types — see below) provided in the design of the device.

In modern Wi-Fi equipment, this indicator can be different: in addition to the simplest devices with 1 antenna, there are models where this number is 2, 3, 4 and even more. The point of using multiple antennas is twofold. Firstly, if there are several external devices per antenna, they have to share the bandwidth among themselves, and the actual communication speed for each subscriber drops accordingly. Secondly, such a design may also be required when communicating with one external device — to work with MU-MIMO technology (see below), which allows you to fully realize the capabilities of modern Wi-Fi standards.

Anyway, more antennas, usually, means a more advanced and functional device. On the other hand, this parameter significantly affects the cost; so specifically looking for equipment with numerous antennas makes sense mainly when the speed and stability of communication are critical.

Note that antennas intended for mobile communications may also be considered in this clause. So when choosing a model with support for mobile networks, it's ok to clarify this point.

MU-MIMO

Device support for MU-MIMO technology - multi-user multi-threaded I / O.

Communication in multiple streams is implemented through the use of multiple antennas on both the transmitting and receiving device. This allows you to increase the bandwidth of the channel, as well as improve the overall quality and stability of the connection. And the term "multi-user" usually means that Wi-Fi equipment is able to simultaneously work with several external devices that support multi-streaming (MIMO). The only exceptions are Wi-Fi adapters (see "Device type") - they are more about the ability to interact with the router / access point as efficiently as possible, which also uses MU-MIMO.

2.4 GHz antennas

The total number of antennas in the router that are responsible for communication in the 2.4 GHz band. For details about the number of antennas, see "Total antennas", about the range — "Frequency range".

5 GHz antennas

The total number of antennas in the router that are responsible for communication in the 5 GHz band. For details about the number of antennas, see "Total antennas", about the range — "Frequency range".

2.4 / 5 GHz antennas

The total number of antennas in the router that can operate on both 5 GHz and 2.4 GHz frequencies. For details about the number of antennas, see "Total antennas", about the range — "Frequency range".

Safety standards

— WPA. An encryption protocol created as a temporary solution to the most critical vulnerabilities of the WEP described below. It uses a more advanced encryption algorithm, as well as the transmission of passwords in encrypted form. However, the reliability of this standard also turned out to be insufficient, so an improved version, WPA2, was developed.

— WEP. Historically, the first encryption protocol used in wireless networks. It uses encryption from 64-bit to 256-bit, the latter option is considered strong in itself, however, the standard's own vulnerabilities allow a specialist to hack such a communication channel without much difficulty. As a result, WEP is completely obsolete, its support is provided mainly for compatibility with the simplest equipment (especially since it is technically easy to provide this support).

— WPA2. The most popular security standard in modern Wi-Fi equipment. At one time, it became an important update to the original WPA: in particular, the AES CCMP algorithm was introduced into WPA2, which is extremely difficult to crack. Over time, however, some vulnerabilities were identified in this protocol, which led to the development of a more advanced WPA3; however, WPA3 is just beginning to be massively implemented, and in most Wi-Fi devices, WPA2 remains the most advanced standard.
It is worth noting two nuances. First, WPA2 is available in two versions — personal and corporate; in this case, we are talking about pers...onal, corporate options are placed in paragraph "802.1x". Secondly, support for this standard is guaranteed to also be compatible with WEP and original WPA.

WPA3. A fundamental improvement to WPA2, introduced in 2018, addressing weaknesses identified in WPA2 in the 14 years since it went live. This standard introduced four key innovations:
  • Improved security for public networks. Unlike its predecessor, WPA3 encrypts the traffic between the gadget and the router / access point, even if the network is public and does not require a password.
  • Protection against the KRACK vulnerability, which allowed hacking the WPA2 communication channel at the time the connection was established. The SAE algorithm is responsible for this protection — more advanced than the previously used PSK. In particular, when establishing a connection via SAE, both devices are considered equal (in PSK, the receiver and transmitter were clearly defined) — this does not allow an attacker to “wedge” between devices using KRACK methods.
  • Easy Connect feature — simplifies connection to Wi-Fi networks for devices that do not have displays (in particular, smart home components). Each of these devices will have a QR code on the body, and to connect to the network, it will be enough to scan this code using a smartphone / tablet already connected to this network. However this function is not directly related to WPA3, WPA2 is sufficient for its operation; however, mass adoption of Easy Connect should be expected at the same time as WPA3.
  • Improved encryption algorithms for sensitive data, suitable even for government agencies and defense enterprises. However, this feature is relevant mainly for the corporate version of WPA3 — and support for this version is indicated as "802.1x" (see below, in this case we are talking mainly about the personal version of this standard).
In many devices, upgrading from WPA2 to WPA3 can be done in software by installing a new firmware version. However, if support for this protocol is important to you, it is best to choose equipment where such support is initially provided. Also note that the presence of WPA3 is almost guaranteed to also be compatible with WPA2.

— 802.1x. In this case, it implies support for corporate security standards — most often the corresponding versions of the WPA2 protocols, in new devices also WPA3. For example, if the specifications indicate "802.1x" in addition to "WPA3", then this means that this model supports both personal and corporate versions of WPA3. As for the differences between similar versions, one of them is the support for a separate authentication server in corporate protocols. In other words, when using this function, data on accounts and access rights are stored separately from Wi-Fi equipment, on a special secure server, and it is this server that in each case checks the data of the connected equipment and decides whether to allow or deny access.

Operating temperature

Ambient air temperature at which the device is guaranteed to remain operational.

All modern Wi-Fi equipment can easily endure the conditions typical for use in apartments, offices, etc. So it makes sense to pay attention to this parameter mainly when choosing a model for outdoor installation (see above) or indoors , where the conditions are not very different from those outside. At the same time, the upper temperature limit is usually quite high, and even in the heat there are usually no problems with operation (of course, if the device is not installed in direct sunlight — which is not recommended anyway). But the lower temperature threshold can be different, not all "street" equipment is designed for frost. However, among frost-resistant models there are solutions where the minimum operating temperature is -10 °C and below, and sometimes even -40 °C and below.
TP-LINK Archer T3U often compared
TP-LINK Archer T4U often compared