United Kingdom
Catalog   /   Photo   /   Flashes

Comparison Yongnuo YN-0906II vs Yongnuo YN-1410

Add to comparison
Yongnuo YN-0906II
Yongnuo YN-1410
Yongnuo YN-0906IIYongnuo YN-1410
from £33.99 
Outdated Product
Outdated Product
TOP sellers
Typeon-camera light/video flashon-camera light/video flash
LED
Camera compatibility
Canon
Fuji
Leica
Nikon
Olympus
Panasonic
Pentax
Samsung
Sigma
Sony
Canon
Fuji
Leica
Nikon
Olympus
Panasonic
Pentax
Samsung
Sigma
Sony
Specs
Brightness920 lm
Number of diodes70 шт140 шт
Power management
 /16 levels/
Illumination angle50 °45 °
Power dissipation5 W12 W
Colour temperature3200-55003200-6000К
Rotary head
Features
yellow orange
orange, white
General
Power source4xAA6хАА
Dimensions100х78х35 mm135х95х55 mm
Weight118 g320 g
Added to E-Catalogseptember 2017may 2017

Brightness

The standard brightness of the on-camera light (see "Type"). Usually, most of these models have the ability to adjust the brightness, so the maximum value is given in the specifications.

When shooting at a short distance, devices that are too bright can “overexpose” the scene, degrading the quality of the shooting (and it can be much more difficult to compensate for excessive brightness in post-processing than the lack of light). So when choosing for this indicator, it is worth proceeding from the specific conditions of use.

Number of diodes

The number of light-emitting diodes (LED) provided in the on-camera light system (see "Type").

The abundance of LEDs allows you to achieve good brightness at a relatively low cost of the entire device — there are many light sources themselves, but they are relatively cheap. However, these models can be inconvenient to carry on camera and work in tight spaces. In turn, compact lamps with a small number of LEDs are more convenient, portable and "manoeuvrable", however, they are either inferior to more "multiply charged" models in terms of brightness, or are noticeably more expensive.

Power management

The ability to manually change the power of the light flux emitted by the flash (with a constant pulse duration, see above). This feature is present in most modern models; it allows you to set the optimal parameters for shooting, so as not to “overexpose” the frame.

The characteristics of models with power management usually indicate the levels to which it can be set. Traditionally, each next (in descending order) level corresponds to half the power than the previous one, and they are indicated by fractional numbers: 1/1 (full power), 1/2, 1/4, 1/8, etc. The features of flash power control depending on the shooting parameters are described in detail in special sources, however, anyway, the more setting levels, the more options you have for setting the optimal parameters. This is especially true for shooting at short distances, where the risk of excessive “flare” increases.

Illumination angle

The angle of illumination provided by the on-camera light source (see "Type").

A large illumination angle, on the one hand, allows you to simultaneously cover a larger area, which is especially important when shooting long shots (at short focal lengths). On the other hand, to achieve sufficient brightness, this requires a large power of light sources, which accordingly affects the price and power consumption of the device. A small coverage angle, in turn, gives a small spot size of the light, but it allows you to achieve good brightness at a relatively low power.

Power dissipation

Dissipated power of the on-camera light source (see "Type"). For traditional pulse flashes, this parameter is not indicated due to irrelevance.

Dissipated power describes the amount of energy that, during operation of a luminaire, is not spent on light radiation, but is dissipated in the surrounding air in the form of heat. Simply put, we are talking about the heat dissipation of the device. Although most modern LEDs are very energy efficient, it is still impossible to achieve 100% efficiency in them — some part of the energy inevitably goes to heat; and given that the number of LEDs in modern on-camera light sources can reach several hundred, then the heat release can be quite noticeable — at the level of tens of watts.

First of all, the overall efficiency of the device depends on this indicator: with equal brightness values \u200b\u200b(see above), a model with a higher power dissipation will inevitably consume more energy. In addition, high heat dissipation may require special cooling systems — including active, using fans; and this further increases energy consumption, and also affects the price, weight, dimensions and noise level generated by the lamp. However, in most cases, these points do not play a special role, and it is worth looking specifically for an on-camera lamp with a minimum power dissipation if efficiency and low heat generation are fundamental to you.

Colour temperature

The colour temperature of the light emitted by the device. Most of the classic flashes have a standard colour temperature of 5500-5600 K, so this parameter is usually not given for such lamps. But on-camera light sources (see "Type") can differ markedly in this indicator, and we will talk about them.

Colour temperature characterizes the overall shade of the glow emitted by the device. At the same time, an interesting nuance is that low values \u200b\u200bcorrespond to colours that a person perceives as warm; and as the colour temperature rises, the hue shifts more and more towards cool colours. For example, for a 60 W incandescent lamp, the light of which has a pronounced yellowish colour, this parameter is approximately 2700 K, and for a fluorescent lamp that produces “daylight” light with a bluish tint, this parameter is about 7000 K.

In general, the colour temperature of lighting is one of the most important parameters when shooting: it determines the colour balance of the image "seen" by the camera. In camera settings, this indicator is called "white balance". It can also be determined automatically, however, for the most reliable colour reproduction, it is still desirable to set its values according to the known colour temperature of the lighting.

Specifically, in on-camera light sources, the colour temperature can be either constant or adjustable. In non-adjustable models, the value of this parameter is the same as in most flash units...— 5500 K, which corresponds approximately to neutral white. Adjustment also provides the possibility of at least lowering the colour temperature — usually up to 3200 K, which approximately corresponds to warm white light. In addition, occasionally there are models in which the maximum colour temperature exceeds 5500 K, reaching 6000 K and even more.

The ability to change the colour temperature can be useful not only for shooting as such, but also for “matching” the lamp with other light sources. The fact is that if several simultaneously used light sources have different colour temperatures, the colour rendition on the scene being shot will be unreliable — to the point that a monochromatic object illuminated by different lamps from different sides may look like a two-colour one. One way to avoid this is to set the colour temperature of the on-camera light to match the ambient light. However, it is worth noting here that the methods of adjusting the shades and the accuracy of such adjustment may be different. The most advanced option is to use two sets of LEDs, with a warm and cold shade of glow; By changing the brightness ratio between these sets, you can also change the overall colour temperature — and quite smoothly and accurately. Another way is to use coloured diffusers (see below), but here the adjustment is stepped, with fixed values (with and without a diffuser). In some devices, both of these methods are combined.

Rotary head

Possibility to turn the flash head (bulb) to the side.

Shooting with a flash aimed directly at the stage, “head on”, is far from always the best option: in particular, this mode gives sharp unpleasant shadows, and in portrait shooting it leads to the “red-eye” effect. At the same time, by turning the head towards the ceiling, you can get soft diffused light. There are other uses for swivel heads.

The simplest flash models with this feature can usually only be rotated in the vertical plane. More advanced options include rotation and horizontally. Here we note that the larger the angle, the more opportunities for setting the location of the head gives the flash. Vertically, it usually does not exceed 90°, and in the horizontal plane it can reach a full 360°.

Features

Autofocus illuminator. The flash has an auxiliary illumination function for the camera's autofocus system. Modern cameras overwhelmingly use the so-called passive autofocus systems that have one serious drawback: very low efficiency in low light and/or low contrast of the object being shot. The autofocus illuminator is designed to solve this problem: before focus, the scene is illuminated by a separate lamp, placed, in this case, directly in the flash body. This provides enough light for normal autofocus operation. Most often, backlight lamps give light with a characteristic reddish tint, however, in some advanced models, infrared illumination is used — invisible to the eye, but perceived by the camera. In addition, illumination systems can use a special light pattern instead of a solid beam, which further simplifies the task of autofocus systems. Anyway, the presence of this function is especially relevant given the fact that the flash is often used as a light source in low light.

— Control on the camera. The ability to change the settings for the flash using the controls of the camera itself, to which it is connected. In some cases (for example, with a wireless connection), this is much more convenient than switching attention from the camera to the flash.

Automatic zoom. The ability to automatically change the angle of dispersion of the flash light. For the angle of dispersion,...see the relevant paragraph above, but here we note that this function provides synchronization between the flash and the lens: when the focal length of the lens changes, the angle of dispersion automatically changes. This provides the most effective illumination of the scene and at the same time relieves you of the need to manually re-adjust the flash to a changed angle of view each time.

Manual zoom. Possibility to change the flash spread angle (see "Light spread angle") manually. This function expands the possibilities for "fine" tuning of work parameters and allows you to set parameters that are not available with automatic zoom (see above). In addition, it will be useful if you have to use several prime lenses with different focal lengths — the flash can be easily adjusted to each of them.

Wireless control. Ability to wirelessly connect the flash to the camera or to another flash as master/slave (if available, see below). The format and specific features of such a connection may be different: wired connection, IR channel, radio, etc. Wireless control is indispensable if the flash must be placed away from the camera; it also makes it easier to create multiple flash systems for optimum lighting. These features are especially useful for studio shooting (although it's not limited to this).

Work in master mode. The ability to operate the flash as a master flash for a system of multiple flashes. The entire system is controlled through the master flash, the operation parameters of the slave flashes are set, and the command to fire is given (note that the master flash itself may not fire at all). If you plan to shoot using a multi-flash system, you will definitely need a model with this function — without it, creating a system is impossible. Of course, master and slave flashes must be mutually compatible; this point should be clarified separately.

Work in slave mode. The ability to work as a flash as a slave in a system of several flashes. In this mode, the device is connected to the master flash and fires on command from it. For more information on flash systems, see "Master Operation" above.

— Diffuser. The colour of the diffuser supplied with the on-camera light source (see "Type"). Colour can be: orange, white, pink or yellow.

A diffuser is a special filter designed to scatter light from individual LEDs, and also, in some cases, to give it a certain colour and change the colour temperature.

— Radio synchronizer. A device designed to wirelessly control a flash or a set of flashes (if each has its own receiver). Usually a separate module installed in the hot shoe; on command to fire, this module sends a radio signal to all receivers tuned to it, ensuring synchronous flash firing. At the same time, some models of luminaires with such a function are capable of receiving via the radio channel not only the start signal, but also the operating parameters (primarily the duration and power of the pulse).

Power source

The type of element used to power the flash.

— AA. Powered by replaceable cells of standard AA size, known in everyday life as "finger-type batteries". The main advantage of such a power supply is the ability to quickly replace “dead” batteries with fresh ones: the replacement process takes one or two minutes on the strength (whereas for the built-in battery, charging is often the only option, which takes a long time). AA elements are sold almost everywhere. On the other hand, with such a power supply, you will either have to regularly spend money on disposable batteries, or separately purchase AA batteries and a charger for them; anyway, additional costs cannot be avoided. Another drawback is the dependence of the battery life of the flash on the quality of the batteries: when using cheap cells that are not designed for serious “loads”, the number of pulses per charge can be significantly (several times) lower than stated in the specifications. However, these shortcomings are generally not critical, and this type of food has become quite widespread. Most modern flashes use 2xAA, 4xAA, 6xAA, depending on power.

— AAA. Powered by replaceable cells (batteries or accumulators) of standard AAA size, known under the informal name "little finger" or "mini finger". Such elements are completely similar to the above-described AA and differ only in smaller sizes, wh...ich makes it possible to reduce the dimensions of the flashes themselves accordingly. However, for a number of reasons, they are used less frequently. Mostly 2xAAA are used.

Battery. Powered by its own original battery, which is not related to standard sizes, and sometimes also non-removable.

On the one hand, in some aspects, such a power source is much more convenient than replaceable batteries. First, it initially comes in a kit, and the device is ready to work out of the box. Secondly, in the same kit there is usually a charger (or the flash itself connected to the network plays its role). Thus, when using it, you do not need to spend money on buying batteries — everything you need is already included in the kit. In addition, we note that special batteries are often more capacious, more powerful and at the same time more compact than replaceable cells; besides, they are easier to "fit" into the overall design of the flash and reduce the size (although the built-in batteries are different). On the other hand, such power has one key drawback: when the charge is exhausted, the battery will most likely have to be recharged, and this takes time and the availability of an outlet (or other external power source). In the best case, if the battery is removable, you can purchase a spare for it and keep it ready — but this feature is not available in all models.

In light of all this, the main field of application for batteries is "flashlights" for video — sources of on-camera light (see "Type"). It is in such devices that high capacity is of key importance: you have to shine "constantly and a lot", and with a high power of the light source, batteries cannot effectively cope with this task.

— CR123A. Replaceable cylindrical batteries, slightly thicker and noticeably shorter than AA batteries, have a diameter of 17 mm and a length of 34.5 mm. They also differ in operating voltage — 3 V. Some time ago they were quite popular in photographic equipment, but today they are extremely rare.
Yongnuo YN-1410 often compared