Dark mode
United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Air Conditioners

Comparison Mitsubishi Electric MXZ-3E54VA 54 m²
on the 3 unit(s)
vs Mitsubishi Electric MXZ-3D54VA 54 m²
on the 3 unit(s)

Add to comparison
Mitsubishi Electric MXZ-3E54VA 54 m² on the 3 unit(s)
Mitsubishi Electric MXZ-3D54VA 54 m² on the 3 unit(s)
Mitsubishi Electric MXZ-3E54VA 54 m²
on the 3 unit(s)
Mitsubishi Electric MXZ-3D54VA 54 m²
on the 3 unit(s)
Outdated Product
from $1,519.92 up to $2,071.44
Outdated Product
TOP sellers
Typemulti split systemmulti split system
Installationwallwall
Recommended room area54 m²54 m²
In box
outdoor unit
outdoor unit
Number of indoor units33
Features
Modes and programs
cooling, heating, dehumidification, ventilation
cooling, heating, dehumidification, ventilation
Functions
inverter compressor
 
inverter compressor
self-diagnosis
Performance
Power consumption (cooling/heating)1350/1590 W1390/1590 W
Cooling capacity5400 W5400 W
Heating capacity7000 W7000 W
Noise level (max/min)53/50 dB50/- dB
Refrigerant typeR410АR410А
Efficiency
Seasonal cooling SEER6.4
Seasonal heating SCOP4
Energy efficiency SEER (cooling)A++
Energy efficiency SCOP (heating)A+
Min. T for cooling mode-10 °C-10 °C
Min. T for heating mode-15 °C-15 °C
General specs
Maximum height difference between units15 m15 m
Maximum pipe length50 m50 m
Dimensions of window/outdoor unit (WxHxD)840x710x330 mm840x710x330 mm
Color
Added to E-Catalogjuly 2017may 2014

Functions

Additional features provided by the device.

Inverter control. The presence of a compressor with inverter power control in the air conditioner. Models without an inverter have only two modes of operation — full power and off, and the set intensity of heating/cooling is provided by turning the compressor on and off for certain periods. In turn, the principle of inverter control is to smoothly change the compressor power, which avoids constant switching on and off. It provides several advantages: minimal wear, no power surges and unnecessary load on the mains, as well as a comfortable (low and stable) noise level. The main disadvantage of inverter models is the rather high cost.

— Timer. A function that allows you to set the time for automatic shutdown of the air conditioner. Thanks to the timer, you can, for example, start the air conditioner before going to bed and fall asleep peacefully without worrying about turning off the device — it will turn itself off after a user-defined time. And in some models, the timer is part of the night mode (see below).

Auto restart. Automatic restoration of air conditioner settings after a power outage. Simply put, when power is restored, a device with this function will continue to operate in the same mode as before the power outage.

Air pollution sensor. A sens...or that monitors the presence of smoke, dust and other contaminants in the air passing through the air conditioner. The use of such a sensor can be different: some models can independently start the ventilation mode when pollution is detected, in others the sensor is only responsible for automatic shutdown, and ventilation must be turned on manually. However, this function greatly facilitates the monitoring of air quality.

Motion sensor. A sensor that monitors the presence of people in the room. Using the location of people in the room, the air conditioner can change the direction of the flow away from people, thereby protecting against drafts. If the presence of people is not detected, then the air conditioner may switch to low power consumption mode and work not at full capacity, maintaining a comfortable temperature, and depending on the implementation of this functionality, it may even turn off if there is no activity in the room for a long time. It helps to save energy and provides an additional guarantee in case the user forgets to turn off the air conditioner manually.

Vertical blinds drive. Recall that in most models the air outlet has the form of a slot, equipped with two types of blinds — horizontal (usually one), along the length, and vertical, along the height. By default, the motor drive has only a horizontal blind: this allows you to change the direction of the airflow vertically, as well as close the duct during non-working hours. However, some modern air conditioners (mostly wall-mounted, see "Installation") also provide a vertical blinds drive — it allows you to turn them from side to side, changing the direction of the horizontal airflow. It significantly expands the possibilities for setting up the unit for the specifics of the situation.

Self-diagnosis. The ability to automatically detect malfunctions and errors in the operation of the air conditioner. The specific features of the operation of this function may be different: in some models, the “health” of the unit is constantly monitored or automatically checked at certain intervals, in others, such a procedure is only started manually. Usually, self-diagnostic systems can automatically fix minor problems that do not require external intervention. More serious problems are reported to the user by the device, for example, by an error code on the display.

Control via smartphone. The ability to remotely control the air conditioner from a smartphone or other similar device, such as a tablet. Usually, for this, you need to install a special application on the device. Such control can be more convenient and intuitive than using the remote control — the application can provide various specific parameters and functions that are not available for the remote control (for example, the schedule of work by day of the week). In addition, through the application, you can monitor the operating parameters of the air conditioner in real time — the set temperature, speed, programme, etc. — and receive notifications of problems. And some models with this feature can even be connected to the Internet — and get access to air conditioning control from anywhere in the world where there is access to the World Wide Web. Connection with the control gadget can be carried out via Bluetooth or Wi-Fi, depending on the model. For some devices, this feature may require the use of an external Wi-Fi module (see below).

Wi-Fi module connect. Such equipment significantly expands the functionality: a Wi-Fi connection can be used to control via a smartphone or even via the Internet, to transfer statistics and other service data to external devices (smartphone, laptop, etc.), for remote diagnostics and troubleshooting, etc. The specific set of capabilities associated with the wireless module should be specified separately; however, this feature is typical mainly for fairly advanced models. Note that modern air conditioners can be equipped with built-in Wi-Fi modules. However, when buying such a model, you have to immediately pay extra for additional communication options, while with a separate Wi-Fi adapter, there is a choice — you can buy it both together with the air conditioner, and separately, later (or even not buy at all if this function turns out to be unnecessary).

I Feel (remote control with temperature sensor). The presence of a temperature sensor in the complete remote control. Usually, such a remote control also has a separate button, when pressed, the air conditioner measures the temperature at the location of the remote control, that is, near the user. It allows you to more accurately control the microclimate than when using a sensor on the indoor unit — the device estimates the temperature at the user's location, and not at the installation site of the indoor unit.

Power consumption (cooling/heating)

Power consumption of the air conditioner in cooling and heating mode; for models without a heating mode, only one number is given. This parameter should not be confused with the effective capacity of the air conditioner. Effective capacity is the amount of heat that the unit can "pump" into the environment or the room. This item also indicates the amount of electricity consumed by the device from the network.

In all air conditioners, the power consumption is several times lower than the effective capacity. It is due to the peculiarities of the operation of such units. At the same time, devices with the same efficiency may differ in power consumption. In such cases, the more economical models usually cost more, but with continued use, the difference can quickly pay off with less electricity consumption.

Also, two points related to electrical engineering depend on this nuance. Firstly, power consumption affects power requirements: models up to 3 – 3.5 kW can be connected to a regular outlet, while higher power consumption requires a three-phase connection (see below). Secondly, the power consumption is needed to calculate the load on the mains and the necessary parameters of additional equipment: stabilizers, emergency generators, uninterruptible power supplies, etc.

Noise level (max/min)

The maximum and minimum level of noise produced by the air conditioner during operation; for split and multi split systems (see "Type"), by default, it is indicated for the indoor unit, and the data for the outdoor unit can be specified in the notes.

The noise level is indicated in decibels; this is a non-linear unit, so it is easiest to evaluate this parameter using comparative tables — they can be found in special sources. Here we note that, according to sanitary standards, the maximum level of constant noise for residential premises is 40 dB during the day and 30 dB at night; for offices, this figure is 50 dB, and in industrial premises higher volume levels may be allowed. So it is worth choosing an air conditioner according to this indicator, taking into account where and how it is planned to use it.

As for specific numbers, among the quietest modern air conditioners, there are models with a minimum performance of 23 – 24 dB, 22 – 21 dB, and sometimes even 20 dB or less. However, units at 31 – 31 dB and 33 – 34 dB are not uncommon; such loudness, usually, does not create discomfort in the daytime, but at night it is no longer desirable. However, in some cases, a louder air conditioner may be the best choice: noise reduction affects the cost, sometimes quite noticeably, and if the device...is not planned to be turned on at night, you can not overpay for additional noise reduction.

Seasonal cooling SEER

The seasonal SEER cooling factor provided by the air conditioner.

The meaning of this parameter is similar to the cooling coefficient — EER (see above): we are talking about the ratio of useful power to spend, and the higher the coefficient, the more efficient the device is. The difference between these parameters lies in the measurement method: EER is measured for strictly standard conditions (outside temperature +35 °C, workload 100%), while SEER is closer to reality — it takes into account seasonal temperature fluctuations (for Europe) and some other specific points, such as the increased efficiency of inverter compressors. Therefore, since 2013, it is customary to use SEER as the main parameter in the EU; this parameter was also adopted for air conditioners supplied to other countries with a similar climate.

Seasonal heating SCOP

Seasonal heating coefficient SCOP provided by the air conditioner.

Like the COP (see above), this parameter describes the overall efficiency of the air conditioner in heating operation and is calculated by the formula: thermal (useful) power divided by electricity consumption. The higher the coefficient, the more efficient the device, respectively. And the difference between COP and SCOP is that COP is measured under strictly standard conditions (outside temperature +7 °C, full workload), and SCOP takes into account seasonal temperature fluctuations (for Europe), changes in air conditioner operating modes, the presence of an inverter and some other options. Thanks to this, SCOP is closer to real indicators, and since 2013 this coefficient has been taken as the main one in the territory of the European Union. However, this parameter is also used for air conditioners supplied to other countries with a similar climate.

Energy efficiency SEER (cooling)

The seasonal energy efficiency class that the air conditioner complies with in cooling operation. Initially, this parameter was designated in letters from A(the most economical indicator) to G (the most expensive); however, more efficient classes than A appeared later — A+, A++ and A+++(the more pluses, the higher the energy efficiency).

This parameter is directly related to the value of the SEER coefficient. For more information on this factor and how it differs from the EER, see "Seasonal Cooling SEER Ratio". Here we note that each class has its range of SEER values; detailed correspondence tables can be found in special sources.

Other things being equal, more energy-efficient air conditioners are more expensive, but the difference can be recouped as it uses less electicity.

Energy efficiency SCOP (heating)

The seasonal energy efficiency class that the air conditioner complies with when operating for heating. Initially, this parameter was designated in letters from A(the most economical indicator) to G (the most expensive); however, more efficient classes than A appeared later — A+, A++ and A+++(the more pluses, the higher the energy efficiency).

This indicator is directly related to the value of the SCOP coefficient. For more information about this coefficient and how it differs from the COP, see "Seasonal heating SCOP". Here we note that each class has its range of SCOP values; detailed tables can be found in special sources.

Other things being equal, more energy-efficient air conditioners are more expensive, but the difference can be recouped as it uses less electricity.