United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Boilers

Comparison BAXI Eco Four 1.14 14 kW vs BAXI Eco Four 1.14 F 14 kW

Add to comparison
BAXI Eco Four 1.14 14 kW
BAXI Eco Four 1.14 F 14 kW
BAXI Eco Four 1.14 14 kWBAXI Eco Four 1.14 F 14 kW
from $537.44 up to $593.52
Outdated Product
from $610.20 up to $675.62
Outdated Product
TOP sellers
Energy sourcegasgas
Installationwallwall
Typesingle-circuit (heating only)single-circuit (heating only)
Heating area105 m²105 m²
Technical specs
Heat output14 kW14 kW
Min. heat output6 kW6 kW
Power supply230 V230 V
Power consumption80 W120 W
Coolant min. T35 °С35 °С
Coolant max. T85 °С85 °С
Consumer specs
"Summer" mode
Heated floor mode
Circulation pump
Control busOpenThermOpenTherm
Boiler specs
Efficiency90.9 %92.5 %
Combustion chamberopen (atmospheric)closed (turbocharged)
Flue diameter120 mm
60/100 mm /80/80 for split flue/
Inlet gas pressure20 mbar20 mbar
Expansion vessel capacity6 L6 L
Expansion vessel pressure0.5 bar0.5 bar
Heat exchangercopper
Safety
Safety systems
gas pressure drop
water overheating
flame loss
draft control
power outage
water circulation failure
frost protection
gas pressure drop
water overheating
flame loss
draft control
power outage
water circulation failure
frost protection
More specs
Dimensions (HxWxD)730x400x299 mm730x400x299 mm
Weight26 kg31 kg
Added to E-Catalogjanuary 2011january 2011

Power consumption

The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.

Efficiency

The efficiency of the boiler.

For electric models (see "Energy source"), this parameter is calculated as the ratio of net power to consumed; in such models, indicators of 98 – 99% are not uncommon. For other boilers, the efficiency is the ratio of the amount of heat directly transferred to the water to the total heat amount released during combustion. In such devices, the efficiency is lower than in electric ones; for them, a parameter of more than 90% is considered good. An exception is gas condensing boilers (see the relevant paragraph), where the efficiency can even be higher than 100%. There is no violation of the laws of physics here. It is a kind of advertising trick: when calculating the efficiency, an inaccurate method is used that does not take into account the energy spent on the formation of water vapour. Nevertheless, formally everything is correct: the boiler gives out more thermal energy to the water than is released during the combustion of fuel since condensation energy is added to the combustion energy.

Combustion chamber

The type of combustion chamber provided in the boiler.

Open(atmospheric). Combustion chambers of this type consume air from the room in which the boiler is installed, and the combustion products are naturally removed through the flue. Boilers of this design are simple and inexpensive but have specific installation requirements: the room must be well-ventilated, and the height of the chimney must be at least 4 m to ensure sufficient draft.

Closed(turbocharged). Closed combustion chambers are isolated from the room in which the boiler is installed: combustion air is taken from the street, and combustion products are removed there. For this, a coaxial flue is usually used — in the form of two pipes nested one inside the other: combustion products are removed through the inner one, and the outer one is responsible for the air supply. Turbocharged combustion chambers are more complicated and expensive than open ones, and the maximum length of the chimney is limited. On the other hand, such a boiler does not burn the air in the room, and it can be installed anywhere, regardless of the ventilation efficiency.

— Is absent. Boilers powered by electricity do not have combustion chambers (see "Source of Energy").

Flue diameter

The diameter of the pipe through which combustion products are discharged from the combustion chamber.

In boilers with a closed combustion chamber often used the coaxial flue, consisting of two pipes nested one inside the other. At the same time, products of combustion are discharged from the combustion chamber through the inner pipe, and the air is supplied through the gap between the inner and outer ones. For such flues, the diameter is usually shown in the form of two numbers — the diameter of the inner and outer pipes, respectively. The most popular values are 60/100, 80/80 and 80/125. Non-coaxial flues can be 100, 110, 125, 130, 140, 150, 160, 180 and 200 mm.

Heat exchanger

The material of the primary heat exchanger, in which thermal energy from hot combustion products is transferred to the heat medium. The efficiency of the boiler, the heating rate and the service life of the unit directly depend on the material of the heat exchanger.

Copper. Copper is a material with the best heat dissipation specs and high corrosion resistance. It heats up quickly, which allows you to save energy during the operation of the heating boiler, has a low roughness coefficient, and has a long service life. The only drawback of this metal is its high cost. Copper heat exchangers are installed in heavy mid-range and premium grade equipment.

Aluminium. Aluminium as a heat exchanger material is characterized by excellent thermal conductivity and long service life. Moreover, it is cheaper than copper. To reduce the cost of production in copper heat exchangers, they try to reduce the wall thickness. You don't need to do this with aluminium.

Cast iron. Boilers with a cast-iron heat exchanger heat up for a long time and cool down slowly, retaining heat for a long time after heating stops. Cast iron is also notable for its high heat capacity and low susceptibility to corrosion. The service life of a cast iron unit can be 30 or 50 years. The reverse side of the coin is the huge weight and size of hea...ting equipment, which is why boilers with cast-iron heat exchangers are produced mainly in floor-standing boilers. In addition, cast iron does not tolerate sudden temperature changes — they can cause cracks.

Steel. Steel heat exchangers in heating boilers are the most widely used. Steel has a combination of high ductility and strength when exposed to high temperatures, is inexpensive, and can be easily processed at production stages. However, steel heat exchangers are susceptible to corrosion. As a result, they are not as durable.

Stainless steel. Stainless steel heat exchangers are rare in heating boilers, which is explained by the high cost of using this material. But they combine the advantages of both cast iron and steel. Stainless steel exhibits high corrosion resistance, resistance to thermal shocks, low inertia, and long service life.
BAXI Eco Four 1.14 often compared
BAXI Eco Four 1.14 F often compared