United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Boilers   /   Circulation Pumps

Comparison Grundfos UPA 120 AUTO 12 m
2"
vs Sprut GPD 15-12A 13 m
195 mm

Add to comparison
Grundfos UPA 120 AUTO 12 m 2"
Sprut GPD 15-12A 13 m 195 mm
Grundfos UPA 120 AUTO 12 m
2"
Sprut GPD 15-12A 13 m
195 mm
from $166.00
Outdated Product
from $107.04 up to $135.16
Outdated Product
TOP sellers
Main functioncold water pressure boostcold water pressure boost
Designsingle headsingle head
Pump typecentrifugalcentrifugal
Rotor typewetwet
Specs
Max. flow3500 L/h3500 L/h
Max. head12 m13 m
Max. operating pressure6 bar6 bar
Max. fluid temperature60 °С40 °С
Features
1 speed
automatic operating mode
control panel
stepless adjustment
automatic operating mode
 
Motor
Max. power consumption270 W270 W
Mains voltage230 V230 V
Motor typeasynchronous
Shaft arrangementhorizontalhorizontal
Shaft materialcermet
Connection
Connection typethreadthread
Inlet/outlet arrangementcoaxiallycoaxially
Inlet2"3/4"
Outlet2"3/4"
More specs
Pump housing materialcast ironcast iron
Impeller materialplastic
Country of brand originDenmarkUkraine
Protection classIP42IP44
Insulation classFH
Port-to-port length195 mm
Dimensions (HxWxD)150x132x195 mm
Weight4.5 kg
Added to E-Catalognovember 2014november 2014

Max. head

The head can be described as the maximum height to which a pump can lift liquid through a vertical pipe without bending or branching. This parameter is directly related to the pressure that the pump produces: 10 m of head approximately corresponds to a pressure of 1 bar (do not confuse this parameter with operating pressure — see more about it below).

The head is one of the key specs for most circulation pumps. Traditionally, it is calculated based on the difference in height between the location of the pump and the highest point of the system; however, this principle is relevant only for units that boost the pressure of cold water(see "Suitable for"). Circulation pumps for heating and DHW work with closed circuits, and the optimal pressure depends on the total hydraulic resistance of the system. Detailed calculation formulas for the first and second cases can be found in special sources.

Max. fluid temperature

The highest liquid temperature that the pump is capable of operating normally.

The possibility of using the unit directly depends on this parameter (see "Suitable for"): for example, models for heating systems must tolerate a temperature of at least 95 °C, and for DHW supply — at least 65 °C. Well, anyway, this parameter should not be exceeded: an overheated pump will fail very quickly, and the consequences of this can be very unpleasant.

Features

— Number of speeds. The number of speeds provided in the design of the pump. Each speed corresponds to its performance value (see above). The options could be:
  • 1 speed. There are no adjustments in such models; when turned on, the pump can operate only at one speed. This is the simplest and most inexpensive option, due to the absence of additional elements (regulators) in the design. Of course, it is convenient only in cases where the unit must operate at full capacity every time it is turned on.
  • 2 speeds. 2 speeds give the user some degree of choice: the pump does not have to be turned on at full power — when it is not required, the unit can be run at reduced power to save electricity and not wear out the mechanisms beyond what is necessary.
  • 3 speeds. The largest number of adjustments found in modern pumps — it makes no sense to provide a larger number for many reasons. It gives even more options for setting operation parameters than 2 speeds.
  • Stepless adjustment. This option implies the ability to set the regulator to any position from minimum to maximum (in some models, fixed settings may also be provided, but only as an additional option). It provides maximum freedom and precision in the choice of operating mode. However, it significantly affects the price; and the real need for smooth adjustment occurs quite rarely.
Automatic operating mode.... The essence of this function differs depending on the purpose of the device (see above). So, in models for increasing the pressure of cold water, the automation turns on the pump when the tap is opened and turns it off when it is closed — a special sensor reacts to the movement of water. In models for heating and domestic hot water, automation is responsible for adjusting the operating parameters — for example, when screwing the valves and reducing the flow rate, the pump can reduce the pressure, as well as, for additional functions, such as an on-off timer. Anyway, this feature makes life easier for the user, eliminating the need to perform certain operations manually and adding new features to the pump; but the specific set of these features depends on the model.

Display. Various additional information can be displayed on the display: operating mode, performance settings, water temperature, set timers, error messages and much more. It makes management more convenient and intuitive. Pumps usually use the simplest form of black and white LCD screens, but this is quite sufficient for the purposes mentioned.

Control panel. In this case, the control panel means a panel that has a switch with a choice of operating modes between automatic (see above) and manual. Accordingly, the presence of several modes almost necessarily means the presence of a control panel. But the speed switches themselves are not considered for this function.

Motor type

The type of electric motor provided in the design of the pump.

— Asynchronous. Engines of this type have the simplicity of design and low price, combined with reliability. Their main disadvantage is the dependence of the rotational speed on the load, which leads to the fact that it is difficult to adjust this frequency accurately for such an engine. At the same time, for domestic use, it is not critical and in the professional sphere, it rarely creates difficulties. Therefore, induction motors are very popular in modern pumps.

— Synchronous. Synchronous motors are distinguished by high accuracy in speed control — it practically does not depend on the load on the rotor; this is their main advantage over asynchronous ones. On the other hand, this type is more complex and expensive, and the need for fine adjustment is quite rare. Therefore, synchronous electric motors are mainly installed in high-end pumps designed for use in specific conditions.

Shaft material

It is the material from which the motor shaft in the pump is made.

— Cermet. It is a material that combines metals and their alloys with non-metallic components. In modern pumps, different types of cermets can be used, differing in price and quality; usually, the features in each case directly depend on the price category of the unit. However, it is well suited for household models with relatively low performance but is poorly suitable for professional use. Therefore, in pumps of more than 15,000 litres per hour, cermet shafts are rarely used.

— Stainless steel. This material is highly durable and reliable, due to which it is found in almost all categories of pumps — from relatively simple to professional, the performance of which is in the tens of thousands of litres per hour. However, it is somewhat more expensive than cermets.

Inlet

The size of the inlet provided in the design of the pump. For plumbing threads (see Connection), the size is traditionally indicated in inches and fractions of an inch (for example, 1" or 3/4"), for flanges, the nominal diameter (DN) of the bore in millimetres is used — for example, DN65.

This parameter must match the dimensions of the mount on the pipe to which the pump is planned to be connected — otherwise, you will have to use adapters, which is not very convenient, and sometimes not recommended at all.

Outlet

The size of the outlet provided in the design of the pump. The value of this parameter is completely similar to the size of the inlet (see above).

Impeller material

It is the material from which the impeller is made. It is the main part of the pump, which provides pressure due to movement.

Plastic. This material is inexpensive in itself, and it is easy to process, due to which it is distinguished by low cost. In addition, plastic is not subject to corrosion. On the other hand, it is considered the least reliable of all materials used in modern pumps and, therefore, is used in relatively inexpensive models that are not designed for serious loads. The exception to this rule are special high-strength polymers but they are rare.

Stainless steel. As the name suggests, stainless steel is virtually corrosion-resistant. However, this is not its only advantage — this material is very durable and reliable, and due to this, it is used even in powerful high-performance models.

Cast iron. This material is in many ways similar to steel — in particular, it is considered very reliable — but it has a slightly higher weight. On the other hand, in most cases, this is not a noticeable drawback, but cast iron costs a little cheaper than stainless steel.

Brass. An alloy based on copper and zinc which has a golden colour. The varieties used in circulation pumps are highly resistant to corrosion, they surpass even stainless steel. Therefore, this option is well suited for...water with a high oxygen content. The disadvantage of brass can be called a rather high cost.

Country of brand origin

In this case, the country of origin refers to the country from which the product brand originates. A brand, in turn, is a general designation by which the products of a particular company are known in the market. The country of its origin does not always coincide with the actual place of production of the product: to reduce the cost of production, many modern companies transfer it to other countries. It is quite normal for products, for example, of an American or German brand, to be made in Taiwan or Turkey. Contrary to popular belief, this in itself does not lead to a decrease in the quality of the goods — it all depends on how carefully the brand owner controls the production. And many companies, especially large and famous ones, monitor the quality very zealously — after all, their reputation depends on it.
Grundfos UPA 120 AUTO often compared
Sprut GPD 15-12A often compared