United Kingdom
Catalog   /   Climate, Heating, Water Heating   /   Heating & Cooling   /   Recuperators & Ventilation Recovery

Comparison VENTS VUE 250 PU EC vs VENTS VUE2 250 P EC

Add to comparison
VENTS VUE 250 PU EC
VENTS VUE2 250 P EC
VENTS VUE 250 PU ECVENTS VUE2 250 P EC
Outdated ProductOutdated Product
TOP sellers
System typecentralizedcentralized
Ventilation typerecuperatorrecuperator
Mountingsuspendedsuspended
Mounting diameter125 mm125 mm
Specs
Air filtersG4G4
Maximum air flow (recuperation)275 m³/h257 m³/h
Number of fan speeds33
Maximum noise level38 dB39 dB
Type of heat exchangerplateplate
Heat exchanger efficiency90 %89 %
General specs
Remote control
EC fan
Power consumption in ventilation mode135 W125 W
Mains voltage230 V230 V
Country of originUkraineUkraine
Added to E-Catalognovember 2018november 2018

Maximum noise level

The noise level produced by the air ventilation unit in normal operation.

This parameter is indicated in decibels, while the decibel is a non-linear unit: for example, a 10 dB increase gives a 100 times increase in sound pressure level. Therefore, it is best to evaluate the actual noise level using special tables.

The quietest modern ventilation units produce about 27–30 dB — this is comparable to the ticking of a wall clock and allows you to use such equipment without restrictions even in residential premises (this noise does not exceed the relevant sanitary standards). 40dB is the daytime noise limit for residential areas, comparable to average speech volume. 55–60 dB — the norm for offices, corresponds to the level of loud speech or sound background on a secondary city street without heavy traffic. And in the loudest, they give out 75–80 dB, which is comparable to a loud scream or the noise of a truck engine. There are also more detailed comparison tables.

When choosing according to the noise level, it should be taken into account that the noise from the air movement through the ducts can be added to the noise of the ventilation unit itself. This is especially true for centralized systems (see "System"), where the length of the ducts can be significant.

Heat exchanger efficiency

Efficiency of the heat exchanger used in the heat exchanger of the supply and exhaust system (see "Features").

Efficiency is defined as the ratio of useful work to the energy expended. In this case, this parameter indicates how much heat taken from the exhaust air, the heat exchanger transfers to the supply air. The efficiency is calculated by the ratio between the temperature differences: you need to determine the difference between the outdoor air and the supply air after the heat exchanger, the difference between the outdoor and exhaust air, and divide the first number by the second. For example, if at an outside temperature of 0 °С, the temperature in the room is 25 °С, and the heat exchanger produces air with a temperature of 20 °С, then the efficiency of the heat exchanger will be (25 – 0)/(20 – 0)= 25/20 = 80%. Accordingly, knowing the efficiency, it is possible to estimate the temperature at the outlet of the heat exchanger: the temperature difference between the inside and outside must be multiplied by the efficiency and then the resulting number is added to the outside temperature. For example, for the same 80% at an outdoor temperature of -10 °C and an internal temperature of 20 °C, the inflow temperature after the heat exchanger will be (20 – -10)*0.8 + -10 = 30*0.8– 10 = 24 – 10 = 14 °C.

The higher the efficiency, the more heat will be returned to the room and the more savings on heating will be. At the same time, a highly efficient heat e...xchanger is usually expensive. Also note that the efficiency may vary slightly for certain values of the external and internal temperatures, while manufacturers tend to indicate the maximum value of this parameter — accordingly, in fact, it may turn out to be lower than the claimed one.

Power consumption in ventilation mode

Electrical power consumed by the air handling unit in normal operation (for models with capacity control - at maximum speed). Knowing this power, you can determine the requirements for connecting the unit, as well as estimate how expensive its operation will be in light of electricity bills. It should be taken into account that for models with an electric reheater (see “Type of reheater”), in this case we are talking about the power of only the ventilation system, and the power of the reheater is given separately (see above); thus, the total power consumption when operating in full format will correspond to the sum of these powers.

Also, based on the power consumption, you can to a certain extent evaluate the performance of the installation: “gluttonous” units usually provide an appropriate flow.