Suitable for
-
Ground. Metal detectors designed to find metal objects buried in the ground - from coins and other historical artifacts to pipelines and caches. They can have different characteristics and scope of application - from the simplest models, suitable only for collecting scrap metal, to powerful professional devices capable of searching even at a depth of a couple of meters. The coil can be protected from moisture (see below), but ground metal detectors are not designed for complete immersion in water.
-
Underwater. Metal detectors, designed, as the name suggests, to search for objects under water - primarily at the bottom of reservoirs. Their main features are due to optimization for the environment: a sealed waterproof case (in most cases, with the ability to submerge the entire body to a depth of several meters), the ability to work with wet salty soils, and a weight distribution designed for ease of use under water. Also, such models are usually equipped with waterproof headphones. Note that buying such a device for land use is hardly justified: holding an underwater metal detector in the air is not as convenient as a regular ground detector, and the expensive moisture protection of the case loses all its meaning.
-
Inspector. Devices designed to conduct searches and search for metal objects on the human body, under clothing. They are used by law enfo
...rcement agencies, security services at airports, train stations, security agencies, etc. Note that in this case we are not talking about stationary “frames”, but only about hand-held detectors. Almost all of them belong to pinpointers (see “Type”) and have a fairly compact size. Thanks to this, the device can be used as a portable device for express inspections, constantly carried with you along with other equipment. However, such a detector can also be useful at a stationary checkpoint, in addition to the frame - it helps to determine exactly where on the body the object that “disturbed” the frame is located.
— For mine clearance. Highly specialized metal detectors for detecting mines or other explosive objects left by the echo of wars and hostilities. Such devices do not need to separate finds by type of metal. Their main purpose is to search for large projectiles, but there are other types of devices for solving specific problems (for example, detecting plastid with a fuse). Small pieces of hardware are usually ignored by such metal detectors. Mine clearance detectors are rarely found in common use, and they are incredibly expensive. Devices for this purpose are heavy and inconvenient, but durable and resistant to weather conditions. They are aimed at professional use by the military and rescue workers.Principle of operation
A method used by a metal detector to find items. Describes both the general scheme of the signal and how it is processed.
—
VLF. Abbreviation for "very low frequency". As the name implies, these metal detectors operate at relatively low electromagnetic frequencies (less than 20 kHz). They use the “transmitter-receiver” operation scheme: one winding transmits the search signal, the other receives it. The transmitting and receiving windings are located in the same plane, in a concentric pattern or DD (see Coil Type). This technology allows you to create relatively inexpensive devices with good ground balance, minimal sensitivity to false alarms and a high degree of accuracy in metal recognition. Of the shortcomings, it is worth noting the rather high cost of production (coils require precision tuning), as well as the relatively small working depth of such metal detectors.
—
VFLEX. A variation of the VLF technology described above, developed by Minelab. The key principles of operation in such metal detectors are the same, however, the control unit in them receives not an analogue, but a digital signal. This has a positive effect on the quality of its processing, but significantly increases the price of the devices themselves.
—
R.F. This principle involves the use of high frequencies and the presence of two coils — a receiver and a transmitter — sep
...arated by a certain distance (usually several tens of centimeters) and located perpendicular to one another. Such a scheme provides a greater depth of detection, but does not allow you to search for small objects and determine the type of metal. Therefore, it is mainly used in "deep" metal detectors.
— P.I. Abbreviation for "pulse induction" — "pulse induction". In such devices, one coil is provided, "mono" (see "Type of coil"), which plays the role of both a receiver and a transmitter. The coil emits signals in separate pulses, and in between them it works as a receiver, "listening" to the response signal from the ground. Such a scheme allows you to effectively search for objects even in an environment unfavorable for electromagnetic pulses — in particular, highly mineralized soils and in salt water. The latter makes PI instruments extremely useful for marine archeology, both underwater and on wet, salty sand beaches. On the other hand, qualitative discrimination in such models is not available.
— OR. A method based on the so-called breakdown of resonance. The coil in such metal detectors is part of an oscillatory circuit, to which a signal is supplied from the generator with a frequency close to the resonant frequency of the circuit. When a metal object enters the field created by the coil, the characteristics of its inductance and, accordingly, the resonant frequency of the entire circuit change. Based on the change in resonance characteristics, the control unit determines not only the presence of metallic objects, but also, to some extent, their composition. OR-devices are simple in design and inexpensive, since they do not require precision settings; at the same time, the depth of detection and the reliability of operation in them are low, and mineralized or wet soil further worsen the performance. Therefore, this method has not received wide popularity; it is used mainly in entry-level devices.
— ZVT. Minelab's proprietary technology, developed primarily for searching for gold treasures and nuggets. The abbreviation stands for "zero voltage transmission", the principle of operation is described as "the creation of ultra-constant high-power magnetic fields of opposite polarity." Due to this, according to the manufacturer, the efficiency and depth of gold detection are significantly increased, as well as the resistance to interference is improved and it becomes possible to work even on soils with very high levels of mineralization. However, ZVT-metal detectors are quite expensive, and the possibility of working with other metals, except for gold, is usually not mentioned in the description of such devices.Dimensions (WxD)
The size of the standard coil (frame) of the metal detector. Theoretically, the larger it is, the deeper the device is able to “see” and the more space it captures in one pass, but the worse it is suitable for searching for small objects and the lower the accuracy with which it localizes them. At the same time, these characteristics depend on so many other factors that in fact, the size of the coil itself affects them very little.
Note that for coils (frames) of an elliptical shape, only one size can be indicated — along the length.
Number of detection frequencies
The number of individual operating frequencies at which the metal detector can operate. For more on the frequencies themselves, see "Detection Frequency" below; here we note that the more options (
3 frequencies and more) are provided in the design, the wider the capabilities of the metal detector, the easier it is to adjust it to the specifics of the objects being searched and the environment. However, most models have
one frequency.
Detection frequency
The operating frequency (or frequency range) of the metal detector. This is one of the most important parameters when choosing a device, because the optimal frequency for different cases will be different — depending on the size and material of the items being searched, the characteristics of the soil and other factors. Detailed recommendations on the choice of frequency for each specific situation can be found in special sources; And already on the basis of this information, it is worth choosing a specific model.
Note that the actual frequency at which the metal detector will operate also depends on the installed coil — they are usually made for a specific frequency. Therefore, to use the full capabilities of the device with the ability to adjust this parameter, you may need replaceable coils.
Max. detection depth
The greatest depth at which a metal detector is guaranteed to be able to detect a metal object. Note that this parameter is most often quite approximate, moreover, somewhat conditional. This is due to the fact that it is usually indicated for an perfect environment (low-mineralized soil, a fairly large object, the material of which optimally matches the frequency of detection of the coil, etc.), and even for such conditions it is difficult to derive an absolutely accurate value. Therefore, in fact, the detection depth is highly dependent on a number of additional factors (from soil characteristics to user skills) and can be significantly less than indicated in the characteristics. Nevertheless, the claimed depth describes the capabilities of the metal detector quite well, and it is quite possible to compare different models with each other.
Note that a large depth not only increases the cost of the device, but can also adversely affect its ability to detect small objects.
Coin detection depth
The deepest depth at which a metal detector is capable of detecting small coins and other objects of similar size. Many users buy a device with the intention of “hunting” for metal trifles, so manufacturers often indicate this parameter separately in the specifications. Due to the small size of the coins, their detection depth is usually much less than the total maximum detection depth (see above).
Discrimination segments
The number of individual discrimination programs provided in the design of the metal detector. In this case, discrimination means filtering the detected objects using a discriminator (see above) so that the device does not work on unwanted objects such as pieces of foil, bottle caps, etc. You can also configure such a filter completely manually, but this may require special knowledge and create difficulties for inexperienced users. To avoid this, some models may have preset programs instead of manual settings. Thanks to such programs, the user just needs to select from the list what type of objects the metal detector should react to, and all the necessary settings will be set by the device's electronics.
Ground balance
Ground balancing method provided in the design of the metal detector. By itself, such balancing is a setting of work parameters for the characteristics of a particular soil — after all, depending on its mineralization, humidity, etc. The soil affects the search signal in different ways, and the device electronics must take this effect into account for high-quality processing of such a signal. Due to the correct balancing, the detection of the desired objects is ensured and at the same time the probability of false positives is minimized; and it can be done in the following ways:
—
Automatic. The most convenient type of balancing that does not require the user to manually adjust the device. Usually, tuning requires some time to move the coil up and down above the ground until the automation sets the necessary parameters. There are two types of auto tuning: preset and tracking. The first option involves balancing the metal detector for a specific type of soil before starting work, after which the device uses the same parameters until the next setting. Such a scheme is inexpensive and can be used even in fairly simple models, but it is not very reliable: even a small change in the type of soil under the coil leads to a decrease in the effective detection depth and an increase in the probability of false positives. Follow-up balancing does not have this disadvantage: devices with this function constantly monitor the characteristics of t
...he soil and make the necessary corrections to the operating parameters right in the process of operation. This increases the efficiency of the search, however, the price of such devices is very high.
— Manual. As the name implies, with such balancing, the necessary parameters must be set by the user himself. This option is considered the most reliable, because. even the most advanced automatic systems do not always work perfectly; And yes, this setup is cheap. On the other hand, it requires certain skills from the operator and may not be suitable for inexperienced users.
— Manual / automatic. A variant that combines both types of balancing described above; in such models, the user can choose the way of setting as they wish.